Chemical Constituents of Eucommia ulmoides in Guizhou Province

WU Gui-hui1,2 CHEN Yan1 ZHENG Li-hua1,2 HUANG Tao2 HAO Xiao-jiang2 ZHANG Jian-xin2

(1.Guizhou University, Guiyang, China 550025)
(2.The Key Laboratory of Chemistry for Natural Product of Guizhou Province and Chinese Academy of Science, Guiyang, China 550002)

【Abstract】Objective: To study the chemical constituents of Eucommia bark in Guizhou Province. Methods: Silica gel, Sephadex LH-20, RP-18, MCI and semi-preparative HPLC were used to study the chemical constituents of Eucommia bark, and the chemical structures were elucidated by application of spectral data. Results: 16 compounds were isolated from the bark of Eucommia ulmoides. Their structures were identified as β-sitosterol (1), cycloeucalenol (2), betulinic acid (3), 24-methylenecycloartenone (4), cycloeucalenone (5), salicifoliol (6), pinoresinol (7), genipin (8), alternariol (9), balanophonin (10), eucommidiol (11), pinoresinol-4'-O-β-D-glucopyranoside (12), eucommiol (13), deoxyeucommiol (14), 8-hydroxypinoresinol (15), and dehydrodiconiferyl alcohol γ’-O-β-D-glucopyranoside (16). Conclusion: Seven compounds, including compounds 2, 4–6, 9, 10 and 15 are isolated from Eucommia ulmoides Oliv. for the first time, and compound 14 is isolated from the bark of Eucommia ulmoides for the first time.

【Keywords】 Eucommia ulmoides Oliv.; Chemical constituents;

【DOI】

【Funds】 National Key Scientific Instrument and Equipment Development Project of China (2011YQ12003506) Science and Technology Industry Research and Development Fund for TCM Modernization of Guizhou Province ([2014] 3081-1)

Download this article

    References

    [1] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China[S]. Vol. Ⅰ. Beijing: CHINA MEDICAL SCIENCE PRESS, 2010: 154. (In Chinese)

    [2] Yao Lina. Study on Chemical Constituents of Eucommia ulmoides[D]. Tianjin: Tianjin University, 2010. (In Chinese)

    [3] Peng Shaodan. Antioxidant Property of Pericarp from Jackfruit[D]. Haikou: Hainan University, 2014. (In Chinese)

    [4] Liu Yuming. Chemical constituents and quality control of fruits of Eucalyptus globules Labill. [D]. Shanghai: The Second Military Medical University, 2004. (In Chinese)

    [5]Jayasinghe ULB, Vithana HSK, Wannigama GP, et al. 24-Methylenecycloartenone from Bhesa nitidissima[J]. Fitoterapia, 2001, 72(5):594–595.

    [6]Khuong-Huu F, Sangare M, Chari VM, et al. Carbon-13 nuclear magnetic resonance spectral analysis of cycloartanol and related compounds[J]. Tetrahedron Lett, 1975, 16(22–23):1787–1790.

    [7]Gonzalez AG, Estevez-Reyes R, Mato C, et al. Salicifoliol, a new furolactone-type lignan from Bupleurum salicifolium[J]. J Nat Prod, 1989, 52(5):1139–1142.

    [8] Ma Qinge. Studies on Chemical Constituents of Murraya koenigii (L. ) Spreng[D]. Beijing: Institute of Materia Medica, Peking Union Medical College, 2013. (In Chinese)

    [9] Qiao Lirui. ISOLATION AND STRUCTURE ANALYSIS OF TWO ENDOPHYTIC FUNGI FROM MAYTENUS HOOKERI LOES[D]. Xi’an: North West A & F University, 2007. (In Chinese)

    [10] Bai Junqi. Studies on chemical constituents of Ilex asprella, Guangdong Chinese Starjasmine Stem and Chonemorpha valvata[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2013. (In Chinese)

    [11] Hua Huiming, Yin Hongquan, Li Baoqiang, et al. Study on Chemical Constituents of Eucommia ulmoides[J]. Molecular Plant Breeding, 2003, 1 (5/6): 801–803. (In Chinese)

    [12] Wang Qiuhong, Zuo Yueming, Zhang Zhongli, et al. Chemical constituents of the effective part of Valeriana amurensis Smir. ex Kom. in treatment of senile dementia[J]. Information on Traditional Chinese Medicine, 2012, 29 (4): 16–19. (In Chinese)

    [13] Peng Jinnian. Studies on extraction, isolation, synthesis and accumulation rules of eucommiol[D]. Xi’an: North West A & F University, 2004. (In Chinese)

    [14]Gewali T. Constituents of the stems of Eucommia ulmiodes Oliv[J]. Shoyakugaku Zasshi, 1988, 42(3):247.

    [15] Lu Laichun. Optimization of extraction and purification of arctiin from Fructus Arctii and Its protection against glucose-induced rat aortic Endothelial Cell injury[D]. Chongqing: THIRD MILITARY MEDICAL UNIVERSITY, 2007. (In Chinese)

    [16]Yoshizawa F, Deyama T, Takizawa N, et al. The constituents of Cistanche tubulosa (SCHRENK) Hook f. Ⅱ:Isolation and structures of phenylethanoid glycoside and a new neolignan glycoside[J]. Chem Pharm Bull, 1990, 38(7):1927–1930.

This Article

ISSN:1001-4454

CN: 44-1286/R

Vol 38, No. 05, Pages 980-984

May 2015

Downloads:0

Share
Article Outline

Abstract

  • 1 Instruments and materials
  • 2 Extraction and isolation
  • 3 Structural identification
  • References