Establishment of a CRISPR/Cas9-VQR gene editing system

CHEN Kai1 SUN Guo-Liang1 SONG Gao-Yuan1 LI Ai-Li1 XIE Chuan-Xiao1 MAO Long1 GENG Shuai-Feng1

(1.Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China 100081)

【Abstract】Clustered Regularly Interspaced Short Palindromic Repeat and Cas9 (CRISPR/Cas9), a new generation of genomeediting technology, is widely applied among bacteria, yeast, animals and plants, however, the typical CRISRP/Cas9 cannot recognize the NGA proto-spacer-motif (PAM), which limits its application. In order to broaden the applications of CRIPSR/Cas9 system, we modified the Streptococcus pyogenes Cas9 (SpCas9) sequence by the PCR site-direct mutagenesis, which encodes V (1135), Q (1335), and R (1337), to make the CRIPSR/Cas9-VQR able to recognize the NGA PAM motif. We also constructed a binary expression vector of CRISRP/Cas9-VQR with maize ubiquitin as the promoter to drive the Cas9-VQR, optimizing SpCas9-codon, adding conserved nuclear localization signal sequence, and increasing the conserved 3' UTR sequence of monocots, and using OsU6 transcripts of sRNA. CRISPR/Cas9-VQR could recognize the NGA motif and cut targeted sequence in vivo. We assembled the Cas9-VQR protein with the s RNAs in vitro. The Cas9-VQR could cleave the targeted fragments with about 5%–70% of mutation efficiency. In the transformation of rice, we detected about 27.50%–70.50% of mutation ratio, with an average of 46.23%. This system broadens the CRISPR/Cas9 applications in crops, especially in these with higher PAM locus of NGA.

【Keywords】 CRISPR/Cas9-VQR; site-direct mutagenesis; PAM; mutation rate;

【DOI】

【Funds】 National Major Project for Developing New GM Crops (2016ZX080009-001)

Download this article

(Translated by HE Z)

    References

    [1] Song G Y, Jia M L, Chen K, Kong X C, Khattak B, Xie C X, Li AL, Mao L. CRISPR/Cas9: A powerful tool for crop genome editing. Crop J, 2016, 4: 75–82.

    [2] Shukla V K, Doyon Y, Miller J C, DeKelver R C, Moehle E A, Worden S E, Mitchell J C, Arnold N L, Gopalan S, Meng X, Choi V M, Rock J M, Wu Y Y, Katibah G E, Zhifang G, McCaskill D, Simpson M A, Blakeslee B, Greenwalt S A, Butler H J, Hinkley SJ, Zhang L, Rebar E J, Gregory P D, Urnov F D. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 2009, 459: 437–441.

    [3] Schiml S, Fauser F, Puchta H. The CRISPR/Cas9 system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J, 2014, 80: 1139–1150.

    [4] Shukla V K, Doyon Y, Miller J C, DeKelver R C, Moehle E A, Worden S E, Mitchell J C, Arnold N L, Gopalan S, Meng X, Choi V M, Rock J M, Wu Y Y, Katibah G E, Zhifang G, McCaskill D, Simpson M A, Blakeslee B, Greenwalt S A, Butler H J, Hinkley SJ, Zhang L, Rebar E J, Gregory P D, Urnov F D. Precise genome modification in the crop species Zeamays using zinc-finger nucleases. Nature, 2009, 459: 437–411.

    [5] Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J, 2014, 2: 348–359.

    [6] Li J F, Norville J E, Aach J, McCormack M, Zhang D, Bush J, Church G M, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol, 2013, 31: 688–691.

    [7] Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J, 2014, 79: 348–359.

    [8] Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu J K. Efficient genome editing in plants using a CSRIPR/Cas system. Cell Res, 2013, 23: 1229–1232.

    [9] Hyun Y B, Kim J, Cho S W, Choi Y, Kim J S, Coupland G. Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted REGN of the CRISPR/Cas9 system to generate heritable null alleles. Planta, 2015, 241: 271–284.

    [10] Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang D L, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L, Liu X, Zhu J K. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA, 2014, 111: 4632–4637.

    [11] Ali Z, Abul-faraj A, Li L, Ghosh N, Piatek M, Mahjoub A, Aouida M, Piatek A, Baltes N J, Voytas D F, Dinesh-Kumar S, Mahfouz M M. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant, 2015, 8: 1288–1291.

    [12] Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol, 2015, 87: 99–110.

    [13] Nekrasov V, Staskawicz B, Weigel D, Jones J D, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol, 2013, 31: 691–693.

    [14] Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi J J, Qiu J L, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013, 31: 686–688.

    [15] Miao J, Guo D S, Zhang J Z, Huang Q P, Qin G J, Zhang X, Wan J M, Gu H Y, Qu L J. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res, 2013, 23: 1233–1236.

    [16] Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu J K. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J, 2014, 12: 797–807.

    [17] Xie K B, Yang Y N. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant, 2013, 6: 1975–1983.

    [18] Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J. Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice, 2014, 1: 5–7.

    [19] Xie K B, Minkenberg B, Yang Y N. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA, 2015, 112: 3570–3575.

    [20] Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu Y G. A robust CRISPR/Cas9 system for convenient high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8: 1274–1284.

    [21] Zhou H, Liu B, Weeks D P, Spalding M H, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res, 2014, 42: 10903–10914.

    [22] Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y. Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep, 2015, 5: 10342.

    [23] Pan C T, Ye L, Qin L, Liu X, He Y J, Wang J, Chen L F, Lu G. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep, 2016, 6: 24765.

    [24] Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks D P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res, 2013, 41: e188.

    [25] Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics, 2014, 41: 63–68.

    [26] Li C, Unver T, Zhang B H. A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in cotton (Gossypium hirsutum L. ) . Sci Rep, 2017, 7: 43902.

    [27] Shan Q W, Wang Y P, Li J, Gao C X. Genome editing in rice and wheat using the CRISPR/Cas9 system. Nat Protocol, 2014, 9: 2395–2410.

    [28] Li B, Cui G, Shen G, Zhan Z, Huang L, Chen J, Qi X. Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Sci Rep, 2017, 7: 43320.

    [29] Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J. Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice, 2014, 7: 1–5.

    [30] Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu J K. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant, 2013, 6: 2008–2011

    [31] Xing H L, Dong L, Wang Z P, Zhang H Y, Han C Y, Liu B, Wang X C, Chen Q J. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol, 2014, 14: 327–328.

    [32] Li J F, Norville J E, Aach J, McCormack M, Zhang D, Bush J, Church G M, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol, 2013, 8: 688.

    [33] Liu W, Zhu X, Lei M, Xia Q, Botella J R, Zhu J K, Mao Y. A detailed procedure for CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana. Sci Bull, 2015, 15: 1332–1347.

    [34] Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014, 32: 947–951.

    [35] Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu Y G, Zhao K. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoSOne, 2016, 11: e0154027.

    [36] Ran F A, Cong L, Yan W X, Scott D A, Gootenberg J S, Kriz A J, Zetsche B, Shalem O, Wu X, Makarova K S, Koonin E V, Sharp P A, Zhang F. In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015, 520: 186–191.

    [37] Kleinstiver B P, Prew M S, Tsai S Q, Topkar V V, Nguyen N T, Zheng Z, Gonzales A P, Li Z, Peterson R T, Yeh J R, Aryee M J, Joung J K. Engineering CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015, 523: 481–485.

    [38] Hu X X, Wang C, Fu Y P, Liu Q, Jiao X Z, Wang K J. Expanding the range of CRISPR/Cas9 genome editing in rice. Mol Plant, 2016, 9: 943–945.

    [39] Hu X X, Meng X B, Liu Q, Li J Y, Wang C J. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnol J, 2018, 16: 292–297.

    [40] Hiei Y, Komari T, Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol, 1997, 35: 205–218.

    [41] Wang K, Liu H Y, Du L P, Ye X G. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol J, 2017, 15: 614–623.

This Article

ISSN:0496-3490

CN: 11-1809/S

Vol 45, No. 06, Pages 848-855

June 2019

Downloads:0

Share
Article Outline

Abstract

  • 1 Materials and methods
  • 2 Results and analysis
  • 3 Discussion
  • 4 Conclusion
  • References