Side-by-side Chinese-English

东湖假单胞菌HYS中的精氨酸琥珀酰转移酶途径缺失对秀丽隐杆线虫毒性的影响

秦迎秋1 伍婷婷1 桂哲1 谢志雄1

(1.武汉大学生命科学学院, 湖北武汉 430072)

【摘要】【背景】东湖假单胞菌HYS是本实验室从武汉东湖水域中分离并鉴定的一株高产铁载体细菌,HYS菌株对秀丽隐杆线虫具有较强毒性。前期研究发现HYS中编码精氨酸琥珀酰转移酶基因(argS)的插入突变可导致其对线虫毒性明显减弱。【目的】探究argS基因功能及其如何参与细菌毒性,为后续深入研究HYS菌株的毒性机制提供理论依据。【方法】采用生物信息学比对、遗传分析和生理生化实验确认argS基因的生物学功能及其参与的精氨酸琥珀酰转移酶(arginine succinyltransferase,AST)途径与细菌毒性的关系。【结果】生物信息学比对结果显示argS编码精氨酸琥珀酰转移酶,其蛋白序列与铜绿假单胞菌中精氨酸琥珀酰转移酶β亚基具有高达88%的相似度;缺失argS导致菌株不能利用精氨酸作为唯一碳源进行生长;精氨酸脱羧酶(arginine decarboxylase,ADC)、精氨酸脱氢酶(argininedehydrogenase,ADH)以及精氨酸脱亚胺酶(argininedeiminase,ADI)途径中关键基因缺失菌株均可正常利用精氨酸作为唯一碳源,且对线虫并无明显毒性减弱现象;添加外源精氨酸导致菌株对线虫的减毒效果更加明显,且菌株产铁载体能力显著下降。【结论】东湖假单胞菌HYS中AST途径可以通过影响菌株铁载体合成来影响其对秀丽隐杆线虫的毒性,本研究为深入了解假单胞菌精氨酸代谢和致病性机制提供了新依据。

【关键词】 东湖假单胞菌HYS;argS基因;精氨酸琥珀酰转移酶途径;毒性;

【DOI】

【基金资助】 国家自然科学基金(31570090); 国家微生物资源平台项目(NIMR-2020-8);

Arginine succinyltransferase pathway deficiency in Pseudomonas donghuensis HYS affects its toxicity to Caenorhabditis elegans

QIN Ying-Qiu1 WU Ting-Ting1 GUI Zhe1 XIE Zhi-Xiong1

(1.College of Life Sciences, Wuhan University, Wuhan, Hubei, China 430072)

【Abstract】[Background] Pseudomonas donghuensis HYS is a high-siderophore-yielding strain isolated and identified by our laboratory from the Wuhan East Lake. HYS has strong toxicity to Caenorhabditis elegans. Previous studies have found that insertions in the argS gene in HYS can significantly reduce its toxicity to C. elegans. [Objective] To explore the function of argS gene and how it affects bacterial toxicity, and to provide a theoretical basis for further study on the mechanism of HYS toxicity. [Methods] The biological function of argS gene and the relationship between the arginine succinyltransferase (AST) pathway and bacterial toxicity were investigated with bioinformatics comparison, genetic analysis, physiological assay, and biochemical experiments. [Results] The argS gene in HYS encoded a protein that shared 88% similarity to the AST β subunit in P. aeruginosa. The deletion of argS prevented the HYS strain from using arginine as the sole carbon source for growth. Strains with the deletion of key genes in arginine decarboxylase (ADC) pathway, arginine dehydrogenase (ADH) pathway, and arginine deiminase (ADI) pathway could normally use arginine as the sole carbon source and had no significantly attenuated effect on the toxicity to C. elegans. Adding arginine to these strains significantly attenuated the toxicity and decreased their ability in producing siderophores. [Conclusion] AST pathway in P. donghuensis HYS can affect the toxicity to C. elegans by influencing the synthesis of the siderophores. This study lays the foundation for further studies on the mechanism of arginine metabolism and pathogenicity in Pseudomonas.

【Keywords】 Pseudomonas donghuensis HYS; argS gene; AST pathway; Toxicity;

【DOI】

【Funds】 National Natural Science Foundation of China (31570090); National Infrastructure of Natural Resources for Science and Technology Program of China (NIMR-2020-8);

Download this article
    References

    [1] Mahajan-Miklos S, Tan MW, Rahme LG, et al. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model [J]. Cell, 1999, 96 (1): 47–56

    [2] Wood, RE. Pseudomonas: the compromised host [J]. Hospital Practice, 1976, 11 (8): 91–100

    [3] Saiman L, Siegel J. Infection control in cystic fibrosis [J]. Clinical Microbiology Reviews, 2004, 17 (1): 57–71

    [4] Vigneshkumar B, Pandian SK, Balamurugan K. Regulation of Caenorhabditis elegans and Pseudomonas aeruginosa machinery during interactions [J]. Archives of Microbiology, 2012, 194 (4): 229–242

    [5] Aznar A, Chen NWG, Rigault M, et al. Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores [J]. Plant Physiology, 2014, 164 (4): 2167–2183

    [6] Chen M, Wang PN, Xie ZX. A complex mechanism involving LysR and TetR/AcrR that regulates iron scavenger biosynthesis in Pseudomonas donghuensis HYS [J]. Journal of Bacteriology, 2018, 200 (13): e00087–18

    [7] Meck C, D’Erasmo MP, Hirsch DR, et al. The biology and synthesis of α-hydroxytropolones [J]. Medchemcomm, 2014, 5 (7): 842–852

    [8] Gao JW, Yu XY, Xie ZX. Draft genome sequence of high-siderophore-yielding Pseudomonas sp. strain HYS [J]. Journal of Bacteriology, 2012, 194 (15): 4121

    [9] Xie GF, Zeng M, You J, et al. Pseudomonas donghuensis HYS virulence towards Caenorhabditis elegans is regulated by the Cbr/Crc system [J]. Scientific Reports, 2019, 9 (1): 8772

    [10] Liu ZJ, Yin YL, Deng D, et al. Research on nutrition and physiology of arginine [J]. Amino Acids&Biotic Resources, 2005, 27 (4): 54–57 (in Chinese)

    [11] Newman J, Seabrook S, Surjadi R, et al. Determination of the structure of the catabolic N-succinylornithine transaminase (AstC) from Escherichia coli [J]. PLo S One, 2013, 8 (3): e58298

    [12] Yang Z, Lu CD. Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa [J]. Journal of Bacteriology, 2007, 189 (11): 3945–3953

    [13] Lu CD, Yang Z, Li W. Transcriptome analysis of the Arg Rregulon in Pseudomonas aeruginosa [J]. Journal of Bacteriology, 2004, 186 (12): 3855–3861

    [14] Jann A, Stalon V, Wauven CV, et al. N2-Succinylated intermediates in an arginine catabolic pathway of Pseudomonas aeruginosa [J]. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83 (13): 4937–4941

    [15] Simon R, Priefer U, Pühler, A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria [J]. Bio/Technology, 1983, 1 (9): 784–791

    [16] Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, et al. Abroad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNAsequences: application for isolation of unmarked Pseudomonas aeruginosa mutants [J]. Gene, 1998, 212 (1): 77–86

    [17] Wang TH, Pentt M, Gao PJ. Expression of xylose metabolic key genes of Trichoderma reesei on various carbon sources measured by a series of northern hybridizations [J]. Acta Microbiologica Sinica, 1999, 39 (6): 503–509 (in Chinese)

    [18] Itoh Y. Cloning and characterization of the aru genes encoding enzymes of the catabolic arginine succinyltransferase pathway in Pseudomonas aeruginosa [J]. Journal of Bacteriology, 1997, 179 (23): 7280–7290

    [19] Markaki M, Tavernarakis N. Modeling human diseases in Caenorhabditis elegans [J]. Biotechnology Journal, 2010, 5 (12): 1261–1276

    [20] Chou HT, Hegazy M, Lu CD. L-Lysine catabolism is controlled by L-arginine and ArgR in Pseudomonas aeruginosa PAO1 [J]. Journal of Bacteriology, 2010, 192 (22): 5874–5880

    [21] Tocilj A, Schrag JD, Li YG, et al. Crystal structure of N-succinylarginine dihydrolase AstB, bound to substrate and product, an enzyme from the arginine catabolic pathway of Escherichia coli [J]. Journal of Biological Chemistry, 2005, 280 (16): 15800–15808

    [22] Shirai H, Mizuguchi K. Prediction of the structure and function of AstA and AstB, the first two enzymes of the arginine succinyltransferase pathway of arginine catabolism [J]. FEBS Letters, 2003, 555 (3): 505–510

    [23] Xu MJ, Rao ZM, Dou WF, et al. The role of ARGRrepressor regulation on L-arginine production in Corynebacterium crenatum [J]. Applied Biochemistry and Biotechnology, 2013, 170 (3): 587–597

    [24] Jiang Z, Chen M, Yu XY, et al. 7-Hydroxytropolone produced and utilized as an iron-scavenger by Pseudomonas donghuensis [J]. Bio Metals, 2016, 29 (5): 817–826

    [25] Sugawara K, Ohbayashi M, Shimizu K, et al. BMY-28438 (3,7-dihydroxytropolone), a new antitumor antibiotic active against B16 melanoma [J]. The Journal of Antibiotics, 1988, 41 (7): 862–868

    [26] Calcott MJ, Owen JG, Lamont IL, et al. Biosynthesis of novel pyoverdines by domain substitution in a nonribosomal peptide synthetase of Pseudomonas aeruginosa [J]. Applied and Environmental Microbiology, 2014, 80 (18): 5723–5731

This Article

ISSN:0253-2654

CN: 11-1996/Q

Vol 47, No. 10, Pages 3257-3265

October 2020

Downloads:0

Share
Article Outline

Abstract

  • 1 Materials and methods
  • 2 Results and analysis
  • 3 Discussion and conclusions
  • References