东湖假单胞菌HYS中的精氨酸琥珀酰转移酶途径缺失对秀丽隐杆线虫毒性的影响

秦迎秋1 伍婷婷1 桂哲1 谢志雄1

(1.武汉大学生命科学学院, 湖北武汉 430072)

【摘要】【背景】东湖假单胞菌HYS是本实验室从武汉东湖水域中分离并鉴定的一株高产铁载体细菌,HYS菌株对秀丽隐杆线虫具有较强毒性。前期研究发现HYS中编码精氨酸琥珀酰转移酶基因(argS)的插入突变可导致其对线虫毒性明显减弱。【目的】探究argS基因功能及其如何参与细菌毒性,为后续深入研究HYS菌株的毒性机制提供理论依据。【方法】采用生物信息学比对、遗传分析和生理生化实验确认argS基因的生物学功能及其参与的精氨酸琥珀酰转移酶(arginine succinyltransferase,AST)途径与细菌毒性的关系。【结果】生物信息学比对结果显示argS编码精氨酸琥珀酰转移酶,其蛋白序列与铜绿假单胞菌中精氨酸琥珀酰转移酶β亚基具有高达88%的相似度;缺失argS导致菌株不能利用精氨酸作为唯一碳源进行生长;精氨酸脱羧酶(arginine decarboxylase,ADC)、精氨酸脱氢酶(argininedehydrogenase,ADH)以及精氨酸脱亚胺酶(argininedeiminase,ADI)途径中关键基因缺失菌株均可正常利用精氨酸作为唯一碳源,且对线虫并无明显毒性减弱现象;添加外源精氨酸导致菌株对线虫的减毒效果更加明显,且菌株产铁载体能力显著下降。【结论】东湖假单胞菌HYS中AST途径可以通过影响菌株铁载体合成来影响其对秀丽隐杆线虫的毒性,本研究为深入了解假单胞菌精氨酸代谢和致病性机制提供了新依据。

【关键词】 东湖假单胞菌HYS; argS基因; 精氨酸琥珀酰转移酶途径; 毒性;

【DOI】

【基金资助】 国家自然科学基金(31570090) National Natural Science Foundation of China (31570090) 国家微生物资源平台项目(NIMR-2020-8) National Infrastructure of Natural Resources for Science and Technology Program of China (NIMR-2020-8)

Download this article

    References

    [1]Mahajan-Miklos S,Tan MW,Rahme LG,et al.Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model[J].Cell,1999,96(1):47-56

    [2]Wood,RE.Pseudomonas:the compromised host[J].Hospital Practice,1976,11(8):91-100

    [3]Saiman L,Siegel J.Infection control in cystic fibrosis[J].Clinical Microbiology Reviews,2004,17(1):57-71

    [4]Vigneshkumar B,Pandian SK,Balamurugan K.Regulation of Caenorhabditis elegans and Pseudomonas aeruginosa machinery during interactions[J].Archives of Microbiology,2012,194(4):229-242

    [5]Aznar A,Chen NWG,Rigault M,et al.Scavenging iron:a novel mechanism of plant immunity activation by microbial siderophores[J].Plant Physiology,2014,164(4):2167-2183

    [6]Chen M,Wang PN,Xie ZX.A complex mechanism involving Lys R and Tet R/Acr R that regulates iron scavenger biosynthesis in Pseudomonas donghuensis HYS[J].Journal of Bacteriology,2018,200(13):e00087-18

    [7]Meck C,D’Erasmo MP,Hirsch DR,et al.The biology and synthesis ofα-hydroxytropolones[J].Medchemcomm,2014,5(7):842-852

    [8]Gao JW,Yu XY,Xie ZX.Draft genome sequence of high-siderophore-yielding Pseudomonas sp.strain HYS[J].Journal of Bacteriology,2012,194(15):4121

    [9]Xie GF,Zeng M,You J,et al.Pseudomonas donghuensis HYS virulence towards Caenorhabditis elegans is regulated by the Cbr/Crc system[J].Scientific Reports,2019,9(1):8772

    [10]Liu ZJ,Yin YL,Deng D,et al.Research on nutrition and physiology of arginine[J].Amino Acids&Biotic Resources,2005,27(4):54-57 (in Chinese)

    [11]Newman J,Seabrook S,Surjadi R,et al.Determination of the structure of the catabolic N-succinylornithine transaminase (Ast C) from Escherichia coli[J].PLo S One,2013,8(3):e58298

    [12]Yang Z,Lu CD.Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa[J].Journal of Bacteriology,2007,189(11):3945-3953

    [13]Lu CD,Yang Z,Li W.Transcriptome analysis of the Arg Rregulon in Pseudomonas aeruginosa[J].Journal of Bacteriology,2004,186(12):3855-3861

    [14]Jann A,Stalon V,Wauven CV,et al.N2-Succinylated intermediates in an arginine catabolic pathway of Pseudomonas aeruginosa[J].Proceedings of the National Academy of Sciences of the United States of America,1986,83(13):4937-4941

    [15]Simon R,Priefer U,Pühler,A.A broad host range mobilization system for in vivo genetic engineering:transposon mutagenesis in gram negative bacteria[J].Bio/Technology,1983,1(9):784-791

    [16]Hoang TT,Karkhoff-Schweizer RR,Kutchma AJ,et al.Abroad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNAsequences:application for isolation of unmarked Pseudomonas aeruginosa mutants[J].Gene,1998,212(1):77-86

    [17]Wang TH,Pentt M,Gao PJ.Expression of xylose metabolic key genes of Trichoderma reesei on various carbon sources measured by a series of northern hybridizations[J].Acta Microbiologica Sinica,1999,39(6):503-509 (in Chinese)

    [18]Itoh Y.Cloning and characterization of the aru genes encoding enzymes of the catabolic arginine succinyltransferase pathway in Pseudomonas aeruginosa[J].Journal of Bacteriology,1997,179(23):7280-7290

    [19]Markaki M,Tavernarakis N.Modeling human diseases in Caenorhabditis elegans[J].Biotechnology Journal,2010,5(12):1261-1276

    [20]Chou HT,Hegazy M,Lu CD.L-Lysine catabolism is controlled by L-arginine and Arg R in Pseudomonas aeruginosa PAO1[J].Journal of Bacteriology,2010,192(22):5874-5880

    [21]Tocilj A,Schrag JD,Li YG,et al.Crystal structure of N-succinylarginine dihydrolase Ast B,bound to substrate and product,an enzyme from the arginine catabolic pathway of Escherichia coli[J].Journal of Biological Chemistry,2005,280(16):15800-15808

    [22]Shirai H,Mizuguchi K.Prediction of the structure and function of Ast A and Ast B,the first two enzymes of the arginine succinyltransferase pathway of arginine catabolism[J].FEBS Letters,2003,555(3):505-510

    [23]Xu MJ,Rao ZM,Dou WF,et al.The role of ARGRrepressor regulation on L-arginine production in Corynebacterium crenatum[J].Applied Biochemistry and Biotechnology,2013,170(3):587-597

    [24]Jiang Z,Chen M,Yu XY,et al.7-Hydroxytropolone produced and utilized as an iron-scavenger by Pseudomonas donghuensis[J].Bio Metals,2016,29(5):817-826

    [25]Sugawara K,Ohbayashi M,Shimizu K,et al.BMY-28438(3,7-dihydroxytropolone),a new antitumor antibiotic active against B16 melanoma[J].The Journal of Antibiotics,1988,41(7):862-868

    [26]Calcott MJ,Owen JG,Lamont IL,et al.Biosynthesis of novel pyoverdines by domain substitution in a nonribosomal peptide synthetase of Pseudomonas aeruginosa[J].Applied and Environmental Microbiology,2014,80(18):5723-5731

This Article

ISSN:0253-2654

CN: 11-1996/Q

Vol 47, No. 10, Pages 3257-3265

October 2020

Downloads:0

Share
Article Outline

摘要

  • 1 材料与方法
  • 2 结果与分析
  • 3 讨论与结论
  • 参考文献