一步法制备锗/MXene复合材料及其作为锂离子电池负极的研究

郭丝霖1,2 康帅1,2 陆文强1,2

(1.中国科学院重庆绿色智能技术研究院, 重庆 400714)
(2.中国科学院大学, 重庆 400714)

【摘要】通过化学溶液法一步制备锗/MXene复合材料,在MXene表面均匀负载了锗金属纳米颗粒。采用SEM和TEM对Ge/MXene复合材料进行了微观形貌分析,探索了复合材料的形成过程,结果表明,Ge/MXene复合材料是二维结构形貌,其元素分布均一。用Ge/MXene复合材料制备了电极,并组装成纽扣电池进行充放电性能测试,对电池的比容量、倍率、循环稳定性能进行了系统分析。测试结果表明,Ge含量为50%时的电化学性能最佳,0.2C下第5~100圈的容量稳定在1200 m Ah/g,载量为1 mg/cm2;载量提高到2 mg/cm2时的比容量依然能达到450 m Ah/g。

【关键词】 MXene; 锗纳米颗粒; 锂离子电池; 负极材料;

【DOI】

【基金资助】 中国科学院青年创新促进会(2019374) Youth Innovation Promotion Association of the Chinese Academy of Sciences(2019374) 中国科学院重庆绿色智能技术研究院青年创新基金(Y82A240H10) CCIGIT Young Innovators Awards(Y82A240H10) 重庆市留学归国人员创新创业支持计划(cx2018152) Chongqing Innovators Program for Returned Overseas Scholars(cx2018152)

Download this article

    References

    [1] LIU T, LIN L, BI X, et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol., 2019, 14(1):50–56.

    [2] JEŻOWSKI P, CROSNIER O, DEUNF E, et al. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat.Mater., 2017, 17(2):167–173.

    [3] TONG X, ZHANG F, CHEN G, et al. Core–shell aluminum@carbon nanospheres for dual-ion batteries with excellent cycling performance under high rates. Adv. Energy Mater., 2018, 8(6):1701967.

    [4] NAYAK P K, ERICKSON E M, SCHIPPER F, et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li-and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater., 2018, 8(8):1702397.

    [5] WINTER M, BARNETT B, XU K. Before Li ion batteries. Chem.Rev., 2018, 118(23):11433–11456.

    [6] DING J, HU W, PAEK E, et al. Review of hybrid ion capacitors:from aqueous to lithium to sodium. Chem. Rev., 2018, 118(14):6457–6498.

    [7] DENG J, BAE C, MARCICKI J, et al. Safety modelling and testing of lithium-ion batteries in electrified vehicles. Nat. Energy,2018, 3(4):261.

    [8] YANG Z, GU L, HU Y, et al. Atomic-scale structure-property relationships in lithium ion battery electrode materials. Ann. Rev. Mater. Res., 2017, 47(1):175–198.

    [9] SUN Y, LIU N, CUI Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy, 2016, 1(7):16071.

    [10] SCHMIDT O, HAWKES A, GAMBHIR A, et al. The future cost of electrical energy storage based on experience rates. Nat. Energy,2017, 2(8):17118.

    [11] ALBERTUS P, BABINEC S, LITZELMAN S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy, 2018, 3(1):16–21.

    [12] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater., 2016, 1(4):16013.

    [13] CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol., 2008,3(1):31–35.

    [14] MO R, ROONEY D, SUN K, et al. 3D Nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat. Commun., 2017, 8:13949.

    [15] LIU Z, YU Q, ZHAO Y, et al. Silicon oxides:a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev., 2019,48(1):285–309.

    [16] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861):359–367.

    [17] MA J, SUNG J, HONG J, et al. Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes. Nat. Commun., 2019, 10(1):475.

    [18] KOVALENKO I, ZDYRKO B, MAGASINSKI A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries.Science, 2011, 334(6052):75–79.

    [19] WU Z, REN W, WEN L, et al. Graphene anchored with Co3O4nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 2010, 4(6):3187–3194.

    [20] GOGOTSI Y. Transition metal carbides go 2D. Nat. Mater., 2015,14(11):1079–1080.

    [21] NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc., 2013, 135(43):15966–15969.

    [22] NAGUIB M, KURTOGLU M, PRESSER V, et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2.Adv. Mater., 2011, 23(37):4248–4253.

    [23] FU Z, ZHANG Q, LEGUT D, et al. Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide.Phys. Rev. B, 2016, 94(10):104103.

    [24] WENG H, RANJBAR A, LIANG Y, et al. Large-gap two-dimensional topological insulator in oxygen functionalized MXene. Phys. Rev. B, 2015, 92(7):075436.

    [25] ZHAO S, KANG W, XUE J. Manipulation of electronic and magnetic properties of M2C(M=Hf, Nb, Sc, Ta, Ti, V, Zr)monolayer by applying mechanical strains. Appl. Phys. Lett., 2014, 104(13):133106.

    [26] MA Z, HU Z, ZHAO X, et al. Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer. J. Phys. Chem. C, 2014, 118(10):5593–5599.

    [27] LIANG X, GARSUCH A, NAZAR F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed., 2015, 54(13):3907–3911.

    [28] ZHAO X, LIU M, CHEN Y, et al. Fabrication of layered Ti3C2with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries. J. Mater. Chem. A, 2015,3(15):7870–7876.

    [29] LUO J, TAO X, ZHANG J, et al. Sn4+ion decorated highly conductive Ti3C2 MXene:promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano, 2016,10(2):2491–2499.

    [30] LIAN P, DONG Y, WU Z, et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy, 2017, 40:1–8.

    [31] DONG Y, ZHENG S, QIN J, et al. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li–S batteries. ACS Nano, 2018, 12(3):2381–2388.

    [32] MEDVEDEV A G, MIKHAYLOV A, GRISHANOV A, et al. GeO2thin film deposition on graphene oxide by the hydrogen peroxide route:evaluation for lithium-ion battery anode. ACS Appl. Mater.Interfaces, 2017, 9(10):9152–9160.

    [33] LI D, WANG H, LIU H, et al. A new strategy for achieving a high performance anode for lithium ion batteries-encapsulating germanium nanoparticles in carbon nanoboxes. Adv. Energy Mater., 2016,6(5):1501666.

    [34] GAO C, KIM N, VILLEGAS R, et al. Germanium on seamless graphene carbon nanotube hybrids for lithium ion anodes. Carbon,2017, 123:433–439.

    [35] ZHANG W, PANG H, SUN W, et al. Metal-organic frameworks derived germanium oxide nanosheets for large reversible Li-ion storage. Electrochem. Commun., 2017, 84:80–85.

    [36] FULLER C S, SEVERIENS J C. Mobility of impurity ions in germanium and silicon. Phys. Rev., 1954, 96(1):21–24.

    [37] GRAETZ J, AHN C C, YAZAMI R, et al. Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc., 2004, 151(5):A698–A702.

    [38] LIU X H, HUANG S, PICRAUX S T, et al. Reversible nanopore formation in Ge nanowires during lithiation–delithiation cycling:an in situ transmission electron microscopy study. Nano Lett., 2011,11(9):3991–3997.

    [39] WANG D, CHANG Y, WANG Q, et al. Surface chemistry and electrical properties of germanium nanowires. J. Am. Chem. Soc.,2004, 126(37):11602–11611.

This Article

ISSN:1000-324X

CN: 31-1363/TQ

Vol 35, No. 01, Pages 105-111

January 2020

Downloads:2

Share
Article Outline

摘要

  • 1 实验方法
  • 2 结果与分析
  • 3 结论
  • 参考文献