Side-by-side Chinese-English

海洋拖缆数据检波器移动时差校正

马光凯1 周铮铮1 耿伟峰1 钱忠平1 晏伟1 任晓乔1

(1.东方地球物理公司物探技术研究中心, 河北涿州 072751)

【摘要】在海洋拖缆地震数据采集中,当震源激发后,检波器不是固定的,而是随着拖缆一直在运动,检波器位置的移动会造成地震反射旅行时误差,影响后续地震数据处理的可靠性,同时降低时移地震资料匹配精度。为此,提出了一种校正检波器移动引起的旅行时误差的方法。该方法利用炮检距、船速和叠加速度计算检波器移动造成的旅行时误差,得到的校正时差是时变的,与炮检距和船速成正比,与叠加速度的平方成反比。实际资料处理结果表明,检波器移动时差校正可以改善动校正后CMP道集的拉平程度,提高速度谱的聚焦度,同时为后续地震数据处理提供高质量的数据。

【关键词】 拖缆数据;检波器移动时差校正;旅行时误差;时变;误差分析;

【DOI】

【基金资助】 国家科技重大专项“大型油气田及煤层气开发”课题“新一代地球物理油气勘探软件系统”(2017ZX05018-001); 中国石油集团公司项目“宽方位及海洋资料处理软件研发与集成”(2016E-1002);

Hydrophone moving-related moveout correction for marine streamer data

MA Guangkai1 ZHOU Zhengzheng1 GENG Weifeng1 QIAN Zhongping1 YAN Wei1 REN Xiaoqiao1

(1.R&D Center, BGP, CNPC, Zhuozhou, Hebei Province, China 072751)

【Abstract】Hydrophones move with the streamers in acquisition of marine seismic data. Such movement causes travel time errors, which has a negative impact on subsequent data processing and data matching for time-lapse seismic survey. To correct the moveout caused by hydrophone moving, we use offset, vessel speed, and stacking velocity to calculate time-varying travel time errors, which is proportional to offset and vessel speed but inversely proportional to the square of stacking velocity. Field data processing shows that after hydrophone moving-related moveout correction, residual moveout in common midpoint (CMP) gathers after automatic normal moveout (NMO) correction is further reduced, and velocity spectra become more focused. This lays the data foundation for subsequent processing.

【Keywords】 streamer data; hydrophone moving-related moveout correction; travel time error; time varying; error analysis;

【DOI】

【Funds】 National Science and Technology Major Project of China (2017ZX05018-001); CNPC Project (2016E-1002);

Download this article
    References

    [1] Yilmaz O; Translated by Huang Xude and Yuan Mingde. Seismic Data Processing [M]. Petroleum Industry Press, Beijing, 1994 (in Chinese).

    [2] Zhou Z Z and Ma G K. Phase-driven deghosting of slanted and horizontal streamer data [C]. SEG Technical Program Expanded Abstracts, 2016, 35: 4756–4759.

    [3] Gary H and Helmut J. Effects of source and receiver motion on seismic data [C]. SEG Technical Program Expanded Abstracts, 1990, 9: 859–862.

    [4] Eiken O, Haugen G U, Schonewille M, et al. A proven method for acquiring highly repeatable towed streamer seismic data [J]. Geophysics, 2003, 68 (4): 1303–1309.

    [5] William H D. Marine vibrators and the Doppler effect [J]. Geophysics, 1988, 53 (11): 1388–1398.

    [6] Schultz P S, Pieprzak A W, Johnson G R, et al. Simple theory for correction of marine vibroseis phase dispersion [C]. SEG Technical Program Expanded Abstracts, 1989, 8: 660–662.

    [7] Gary H and Helmut J. The effects of source and receiver motion on seismic data [J]. Geophysical Prospecting, 1995, 43 (2): 221–244.

    [8] Jan D. The effects of receiver motion on seismic data and velocity analysis [C]. SEG Technical Program Expanded Abstracts, 2001, 20: 1890–1893.

    [9] XUE Dongchuan, ZHU Zhenyu, WANG Xiaoliu, et al. A receiver motion correction method for streamer data [J]. Oil Geophysical Prospecting, 2017, 52 (1): 1–7 (in Chinese).

    [10] LI Zhenchun, ZHANG Junhua. The Method of Seismic Data Processing [M]. China University of Petroleum Press, Dongyong, Shangdong, 2004 (in Chinese).

    [11] LU Jimeng. The Principles of Seismic Exploration [M]. China University of Petroleum Press, Dongyong, Shangdong, 2006 (in Chinese).

This Article

ISSN:1000-7210

CN: 13-1095/TE

Vol 55, No. 02, Pages 266-271+228

April 2020

Downloads:0

Share
Article Outline

Abstract

  • 0 Introduction
  • 1 Methodology
  • 2 Application of field data
  • 3 Conclusion
  • References