致病疫霉组蛋白H2A变异体序列与表达

汪晓雯1 国立耘1

(1.中国农业大学植物保护学院植物病理系农业部植物病理学重点实验室, 北京 100193)

【摘要】在真核生物中,DNA缠绕在组蛋白上形成核小体,一个组蛋白分子包括H2A、H2B、H3和H4各2个核心组蛋白亚基。在这4种核心组蛋白中,H2A富含多样化,且在细胞的生物途径中起重要作用的变异体,因此,H2A家族一直是研究热点。致病疫霉是重要的病原菌也是研究卵菌的模式物种之一,目前关于卵菌表观遗传的研究还未见报道。本研究针对致病疫霉组蛋白H2A变异体,利用基因组信息和基因芯片数据,通过序列比对、系统发育分析以及基因表达水平检测,发现在致病疫霉基因组中存在组蛋白H2A变异体H2A.X.1、H2A.X.2和H2A.Z,它们在不同生长发育阶段和侵染过程呈现特异的表达谱。研究结果为进一步研究致病疫霉表观遗传机制奠定了基础。

【关键词】 卵菌; 晚疫病菌; H2A.X; H2A.Z; 系统发育; 表达谱;

【DOI】

【基金资助】 国家自然科学基金(No.30270862)资助 National Natural Science Foundation of China(No.30270862)

Download this article

    References

    [1]Luger K,Mäder AW,Richimond RK,et al.Crystal structure of the nucleosome core particle at 2.8Åresolution.Nature,1997,389(6648):251-260.

    [2]Malik HS,Henikoff S.Phylogenomics of the nucleosome.Nat Struct Biol,2003,10(11):882-891.

    [3]AusióJ,Abbott DW.The many tales of a tail:carboxyl-terminal tail heterogeneity specializes histone H2A variants for defined chromatin function.Biochemistry,2002,41(19):5945-5949.

    [4]Kimmins S,Sassone-Corsi P.Chromatin remodelling and epigenetic features of germ cells.Nature,2005,434(7033):583-589.

    [5]Talasz H,Helliger W,Sarg B,et al.Hyperphosphorylation of histone H2A.X and dephosphorylation of histone H1 subtypes in the course of apoptosis.Cell Death Differ,2002,9(1):27-39.

    [6]Rossetto D,Avvakumov N,CôtéJ.Histone phosphorylation:a chromatin modification involved in diverse nuclear events.Epigenetics,2012,7(10):1098-1108.

    [7]Larochelle M,Gaudreau L.H2A.Z has a function reminiscent of an activator required for preferential binding to intergenic DNA.EMBO J,2003,22(17):4512-4522.

    [8]Coleman-Derr D,Zilberman D.DNA methylation,H2A.Z,and the regulation of constitutive expression.Cold Spring Harb Symp Quant Biol,2012,77:147-154.

    [9]Abbott DW,Ivanova VS,Wang XY,et al.Characterization of the stability and folding of H2A.Z chromatin particles:implications for transcriptional activation.J Biol Chem,2001,276(45):41945-41949.

    [10]Jin JJ,Cai Y,Li B,et al.In and out:histone variant exchange in chromatin.Trends Biochem Sci,2005,30(12):680-687.

    [11]Henikoff S,Furuyama T,Ahmad K.Histone variants,nucleosome assembly and epigenetic inheritance.Trends Genet,2004,20(7):320-326.

    [12]Tyler BM,Tripathy S,Zhang XM,et al.Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis.Science,2006,313(5791):1261-1266.

    [13]Fry W.Plant disease that changed the world Phytophthora infestans:the plant(and R gene)destroyer.Mol Plant Pathol,2008,9(3):385-402.

    [14]Han M,Liu G,Li JP,et al.Phytophthora infestans field isolates from Gansu province,China are genetically highly diverse and show a high frequency of self fertility.J Eukaryotic Microbiol,2012,60(1):79-88.

    [15]Guo LY,Zhu XQ,Hu CH,et al.Genetic structure of Phytophthora infestans populations in China indicates multiple migration events.Phytopathology,2010,100(10):997-1006.

    [16]Guo LY,Ko WH.Two widely accessible media for growth and reproduction of Phytophthora and Pythium species.Appl Environ Microbiol,1993,59(7):2323-2325.

    [17]de Bruijn I,Belmonte R,Anderson VL,et al.Immune gene expression in trout cell lines infected with the fish pathogenic oomycete Saprolegnia parasitica.Dev Comp Immunol,2012,38(1):44-54.

    [18]Lévesque CA,Brouwer H,Cano L,et al.Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire.Genome Biol,2010,11(7):R73,doi:10.1186/gb-2010-11-7-r73.

    [19]Kemen E,Gardiner A,Schultz-Larsen T,et al.Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana.PLo S Biol,2011,9(7):e1001094.

    [20]Haas BJ,Kamoun S,Zody MC,et al.Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans.Nature,2009,461(7262):393-398.

    [21]Letunic I,Doerks T,Bork P.SMART:recent updates,new developments and status in 2015.Nucleic Acids Res,2015,43(D1):D257-D260.

    [22]Finn RD,Bateman A,Clements J,et al.Pfam:the protein families database.Nucleic Acids Res,2014,42(D1):D222-D230.

    [23]Marchler-Bauer A,Lu SN,Anderson JB,et al.CDD:a conserved domain database for the functional annotation of proteins.Nucleic Acids Res,2011,39(S1):D225-D229.

    [24]Nielsen M,Lundegaard C,Lund O,et al.CPHmodels-3.0-Remote homology modeling using structure guided sequence profiles.Nucleic Acids Res,2010,38(S2):W576-W581,doi:10.1093/nar/gkq535.

    [25]Larkin MA,Blackshields G,Brown NP,et al.Clustal W and Clustal X version 2.0.Bioinformatics,2007,23(21):2947-2948.

    [26]Tamura K,Peterson D,Peterson N,et al.MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods.Mol Biol Evol,2011,28(10):2731-2739.

    [27]Thatcher TH,Gorovsky MA.Phylogenetic analysis of core histone H2A,H2B,H3 and H4.Nucleic Acids Res,1994,22(2):174-179.

This Article

ISSN:1000-3061

CN: 11-1998/Q

Vol 32, No. 11, Pages 1564-1575

November 2016

Downloads:0

Share
Article Outline

知识点

摘要

  • 1 材料与方法
  • 2 结果与分析
  • 3 结论
  • 参考文献