铜离子对混合菌群降解三氯乙烯的影响与机制分析

高艳辉1 赵天涛1 邢志林1,2 何芝1 张丽杰1 彭绪亚2

(1.重庆理工大学化学化工学院, 重庆 400054)
(2.重庆大学城市建设与环境工程学院, 重庆 400045)
【知识点链接】操纵子; 标志基因; 辅酶; 拷贝数; 嵌合体

【摘要】在三氯乙烯(TCE)胁迫条件下,从生活垃圾填埋场覆盖土中富集得到了可高效降解TCE的混合菌群SWA1。考察了铜离子浓度0-15μmol/L范围内混合菌群对TCE的降解,当铜离子浓度为0.03μmol/L时,降解速率最大为29.60 nmol/min,降解率达95.75%。此条件下的pmo A和mmo X表达量均达最大值,pmo A的相对表达量(4.22 E-03)比mmo X(9.30 E-06)和Lmp H(0)高3个数量级。在0-0.75μmol/L和1-15μmol/L两个铜离子浓度区间,分别出现了TCE降解峰值,高通量测序结果表明,甲基孢囊菌科Methylocystaceae的甲烷氧化菌为优势微生物。随着铜离子浓度提高,混合菌群SWA1生物多样性显著降低。铜离子浓度的变化影响了混合菌群的结构和活性,进而影响了TCE降解机制。当铜离子浓度为0.03μmol/L时,降解机制包括TCE直接降解和甲烷氧化菌共代谢降解。当铜离子浓度为5μmol/L时,降解率可达到84.75%。此时,降解机制包括TCE直接降解以及甲烷氧化菌和含苯酚羟化酶菌群的共代谢降解。

【关键词】 混合菌群; 三氯乙烯; 关键酶; 群落结构; 降解机制;

【DOI】

【基金资助】 国家自然科学基金(Nos.51378522,41502328) National Natural Science Foundation of China(Nos.51378522,41502328) 重庆市基础科学与前沿技术研究项目(No.cstc2015jcyjB0015)资助 Fundamental and Advanced Research Projects of Chongqing(No.cstc2015jcyjB0015)

Download this article

    References

    [1]Shukla AK,Upadhyay SN,Dubey SK.Current trends in trichloroethylene biodegradation:a review.Crit Rev Biotechnol,2014,34(2):101–114.

    [2]Chee GJ.Biodegradation analyses of trichloroethylene(TCE)by bacteria and its use for biosensing of TCE.Talanta,2011,85(4):1778–1782.

    [3]Liu JB,Amemiya T,Chang Q,et al.Toluene dioxygenase expression correlates with trichloroethylene degradation capacity in Pseudomonas putida F1 cultures.Biodegradation,2012,23(5):683–691.

    [4]Guo Y,Cui KP.Effect of sulfate reduction on biodegradation of trichloroethylene.Chin J Environ Engin,2014,8(10):4159–4162(in Chinese).

    [5]Schmidt KR,Gaza S,Voropaev A,et al.Aerobic biodegradation of trichloroethene without auxiliary substrates.Water Res,2014,59:112–118.

    [6]Li Y,Pan T,Liu F,et al.Co-metabolism biodegradation of tetrachloroethylene under different groundwater conditions.Rock Min Anal,2012,31(4):682–688(in Chinese).

    [7]Paszczynski AJ,Paidisetti R,Johnson AK,et al.Proteomic and targeted q PCR analyses of subsurface microbial communities for presence of methane monooxygenase.Biodegradation,2011,22(6):1045–1059.

    [8]Xing ZL,Zhang LJ,Zhao TT.Advances in degradation of chlorinated hydrocarbons by obligate and facultative methanotrophs.Chin J Biotech,2014,30(4):531–544(in Chinese).

    [9]Pant P,Pant S.A review:advances in microbial remediation of trichloroethylene(TCE).J Environ Sci(China),2010,22(1):116–126.

    [10]Wang JN,Shi YY,Zheng LY,et al.Isolation and identification of petroleum degradation bacteria and interspecific interactions among four Bacillus strains.Environ Sci,2015,36(6):2245–2251(in Chinese).

    [11]Mukherjee P,Roy P.Identification and characterisation of a bacterial isolate capable of growth on trichloroethylene as the sole carbon source.Adv Microbiol,2012,2(3):284–294.

    [12]Oldenhuis R,Oedzes JY,Van der Waarde JJ,et al.Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene.Appl Environ Microbiol,1991,57(1):7–14.

    [13]Dedysh SN,Liesack W,Khmelenina VN,et al.Methylocella palustris gen.nov.,sp.nov.,a new methane-oxidizing acidophilic bacterium from peat bogs,representing a novel subtype of serine-pathway methanotrophs.Int J Syst Evol Microbiol,2000,50(3):955–969.

    [14]Vorobev AV,Baani M,Doronina NV,et al.Methyloferula stellata gen.nov.,sp.nov.,an acidophilic,obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase.Int J Syst Evol Microbiol,2011,61(10):2456–2463.

    [15]Semrau JD,Di Spirito AA,Yoon S.Methanotrophs and copper.FEMS Microbiol Rev,2010,34(4):496–531.

    [16]Zhang YR,Chen HQ,Gao YH,et al.Sequence analysis of 16S r DNA and pmo CAB gene cluster of trichloroethylene-degrading methanotroph.Chin J Biotech,2014,30(12):1912–1923(in Chinese).

    [17]Choi DW,Kunz RC,Boyd ES,et al.The membrane-associated methane monooxygenase(p MMO)and p MMO-NADH:quinone oxidoreductase complex from Methylococcus capsulatus Bath.J Bacteriol,2003,185(19):5755–5764.

    [18]Gilbert B,Mc Donald IR,Finch R,et al.Molecular analysis of the pmo(particulate methane monooxygenase)operons from two type II methanotrophs.Appl Environ Microbiol,2000,66(3):966–975.

    [19]Mc Donald IR,Bodrossy L,Chen Y,et al.Molecular ecology techniques for the study of aerobic methanotrophs.Appl Environ Microbiol,2008,74(5):1305–1315.

    [20]Basu P,Katterle B,Andersson KK,et al.The membrane-associated form of methane mono-oxygenase from Methylococcus capsulatus(Bath)is a copper/iron protein.Biochem J,2003,369(2):417–427.

    [21]Hanson RS,Hanson TE.Methanotrophic bacteria.Microbiol Rev,1996,60(2):439–471.

    [22]Green J,Prior SD,Dalton H.Copper ions as inhibitors of protein C of soluble methane monooxygenase of Methylococcus capsulatus(Bath).Eur J Biochem,1985,153(1):137–144.

    [23]Han B,Su T,Li X,et al.Research progresses of methanotrophs and methane monooxygenases.Chin J Biotech,2008,24(9):1511–1519(in Chinese).

    [24]Liebner S,Svenning MM.Environmental transcription of mmo X by methane-oxidizing Proteobacteria in a subarctic palsa peatland.Appl Environ Microbiol,2013,79(2):701–706.

    [25]Jagadevan S,Semrau JD.Priority pollutant degradation by the facultative methanotroph,Methylocystis strain SB2.Appl Microbiol Biotech,2013,97(11):5089–5096.

    [26]Smith SM,Rawat S,Telser J,et al.Crystal structure and characterization of particulate methane monooxygenase from Methylocystis species strain M.Biochemistry,2011,50(47):10231–10240.

    [27]Mukherjee P,Roy P.Copper enhanced monooxygenase activity and FT-IR spectroscopic characterisation of biotransformation products in trichloroethylene degrading bacterium:Stenotrophomonas maltophilia PM102.Biomed Res Int,2013,(6):643–653.

    [28]Zhao T,Zhang LJ,Zhang YR,et al.Characterization of Methylocystis strain JTA1isolated from aged refuse and its tolerance to chloroform.J Environ Sci,2013,25(4):770–775.

    [29]Zhao TT,Xiang JX,Zhang LJ,et al.Screening and biological characteristics of amphitrophic methane-oxidizing bacteria from aged-refuse.Environ Sci,2012,33(5):1670–1675(in Chinese).

    [30]Zhao TT,He CM,Zhang LJ,et al.Kinetics of affinity to methane oxidation by Chryseobacterium sp.from aged-refuse.CIESC J,2011,62(7):1915–1921(in Chinese).

    [31]Song LY,Wang YQ,Tang W,et al.Bacterial community diversity in municipal waste landfill sites.Appl Microbiol Biotechnol,2015,99(18):7745–7756.

    [32]Heyer KU,Hupe K,Stegmann R.Methane emissions from MBT landfills.Waste Manag,2013,33(9):1853–1860.

    [33]Harborth P,FußR,Münnich K,et al.Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation:strong N2O hotspots at the working face.Waste Manag,2013,33(10):2099–2107.

    [34]Galvão TC,Mohn WW,De Lorenzo V.Exploring the microbial biodegradation and biotransformation gene pool.Trends Biotechnol,2005,23(10):497–506.

    [35]Luo MF,Wu H,Wang L,et al.Growth characteristics of a methane-utilizing mixed consortia MY9.Chin J Proc Eng,2009,9(1):113–117(in Chinese).

    [36]Fierer N,Jackson JA,Vilgalys R,et al.Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays.Appl Environ Microbiol,2005,71(7):4117–4120.

    [37]Youssef N,Sheik CS,Krumholz LR,et al.Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16s r RNA gene-based environmental surveys.Appl Environ Microbiol,2009,75(16):5227–5236.

    [38]Hong C,Si Y,Xing Y,et al.Illumina Miseq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas.Environ Sci Pollut Res,2015,22(14):10788–10799.

    [39]Prior SD,Dalton H.The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus(Bath).J Gen Microbiol,1985,131(1):155–163.

    [40]Ho A,Lüke C,Reim A,et al.Selective stimulation in a natural community of methane oxidizing bacteria:effects of copper on pmo A transcription and activity.Soil Biolog Biochem,2013,65:211–216.

    [41]Zhang Y,Hu M,Li PF,et al.Trichloroethylene removal and bacterial variations in the up-flow anaerobic sludge blanket reactor in response to temperature shifts.Appl Microbiol Biotechnol,2015,99(14):6091–6102.

    [42]Zhang Y,Wang X,Hu M,et al.Effect of hydraulic retention time(HRT)on the biodegradation of trichloroethylene wastewater and anaerobic bacterial community in the UASB reactor.Appl Microbiol Biotechnol,2015,99(4):1977–1987.

    [43]Dey K,Roy P.Degradation of trichloroethylene by Bacillus sp.:isolation strategy,strain characteristics,and cell immobilization.Curr Microbiol,2009,59(3):256–260.

    [44]Toribio-Jiménez J,Rodríguez-Barrera MÁ,Lucena MV,et al.Production of biosurfactants by bacteria isolated from a mine tailing zone in southern Mexico and their resistance to heavy metals.African J Bacter Res,2014,6(4):23–31.

    [45]Peña-Montenegro TD,Lozano L,Dussán J.Genome sequence and description of the mosquitocidal and heavy metal tolerant strain Lysinibacillus sphaericus CBAM5.Stand Genomic Sci,2015,10(1):2.

    [46]Jenkins O,Byrom D,Jones D.Methylophilus:a new genus of methanol-utilizing bacteria.Int J Syst Evol Microbiol,1987,37(4):446–448.

    [47]Stourman NV,Rose JH,Vuilleumier S,et al.Catalytic mechanism of dichloromethane dehalogenase from Methylophilus sp.strain DM11.Biochemistry,2003,42(37):11048–11056.

    [48]Mera N,Iwasaki K.Use of plate-wash samples to monitor the fates of culturable bacteria in mercury and trichloroethylene-contaminated soils.Appl Microbiol Biotechnol,2007,77(2):437–445.

    [49]Futamata H,Harayama S,Hiraishi A,et al.Functional and structural analyses of trichloroethylene-degrading bacterial communities under different phenol-feeding conditions:laboratory experiments.Appl Microbiol Biotechnol,2003,60(5):594–600.

    [50]Movahedyan H,Khorsandi H,Salehi R,et al.Detection of phenol degrading bacteria and Pseudomonas putida in activated sludge by polymerase chain reaction.Iran J Environ Health Sci Engin,2009,6(2):115–120.

    [51]Van Der Ha D,Vanwonterghem I,Hoefman S,et al.Selection of associated heterotrophs by methane-oxidizing bacteria at different copper concentrations.Antonie Van Leeuwenhoek,2013,103(3):527–537.

    [52]Agarry SE,Durojaiye AO,Solomon BO.Microbial degradation of phenols:a review.Int J Environ Pollut,2008,32(1):12–28.

    [53]Shukla AK,Vishwakarma P,Singh RS,et al.Bio-filtration of trichloroethylene using diazotrophic bacterial community.Bioresour Technol,2010,101(7):2126–2133.

This Article

ISSN:1000-3061

CN: 11-1998/Q

Vol 32, No. 05, Pages 621-634

May 2016

Downloads:0

Share
Article Outline

知识点

摘要

  • 1 材料与方法
  • 2 结果与分析
  • 3 结论
  • 参考文献