基于负载系数的轨道交通网络控制站点辨识

王立夫1 朱枫1 郭戈1 赵国涛1

(1.东北大学秦皇岛分校控制工程学院, 河北秦皇岛 066004)
【知识点链接】经典控制理论; 邻接矩阵; 增广路

【摘要】城市轨道交通客流量对轨道交通运行的效率与安全至关重要.利用客流信息,提出负载系数衡量网络负载情况,并作为轨道交通网络边的权重,建立轨道交通网络模型.运用复杂网络的可控性理论分析轨道交通网络的可控性问题,给出轨道交通网络控制节点的辨识方法,实现对城市轨道交通网络限流车站的控制.以北京地铁网络为实例建立携带负载系数的网络模型,对其控制节点的选取进行分析,结果表明现行常态化控制站点不能使网络完全可控,且选择的控制站点数量较多,成本较高,应用负载系数作为权重选择的限流站点不仅能够使网络完全能控选择的控制站点数量更少,成本较低,而且更多地分布于超载线路上,同时所提出方法可以有效找出控制站点,为实际限流车站的选取提供有效的参考.

【关键词】 复杂网络; 轨道交通网络; 驱动节点; 限流站; 负载系数;

【DOI】

【基金资助】 国家自然科学基金项目(61402088) 河北省自然科学基金项目(F2016501023,F2017501041) 中央高校基本科研业务费专项基金项目项目(N2023022)

Download this article

    References

    [1] Xu X Y. Passenger flow control with multi-station coordination in subway networks:Algorithm development and real-world case study[J]. Transport Metrica B, 2019, 7(1):446-472.

    [2]Zhao P, Yao X M, Yu D D. Cooperative passenger inflow control of urban mass transist in peak hours[J].Journal of Tongji University:Natural Science, 2013,42(9):1340-1346.

    [3] Liu Y Y, Slotine J J, Barabási A L. Controllability of complex networks[J]. Nature, 2011, 473(7346):167-173.

    [4] Yuan Z Z, Zhao C, Di Z R, et al. Exact controllability of complex networks[J]. Nature Communications, 2013,4(1):2447-2485.

    [5] Chin S P, Cohen J, Albin A, et al. A mathematical analysis of network controllability through driver nodes[J]. IEEE Transactions on Computational Social Systems, 2017,4(2):40-51.

    [6] Zhao C, Zeng A, Jiang R, et al. Controllability of flow-conservation networks[J]. Physical Review E:Statistical, Nonlinear, and Soft Matter Physics, 2017,96(1):012314.

    [7] Song K, Li G, Chen X, et al. Target controllability of two-layer multiplex networks based on network flow theory[J]. IEEE Transactions on Cybernetics, 2019, DOI:10.1109/TCYB.2019.2906700.

    [8] Menara T, Bassett D S, Pasqualetti F. Structural controllability of symmetric networks[J]. IEEE Transactions on Automatic Control, 2019, 64(9):3740-3747.

    [9] Latora V, Marchiori M. Is the Boston subway a small-world network?[J]. Physica A:Statistical Mechanics and its Applications, 2002, 314(1):109-113.

    [10] Seaton K A, Hackett L M. Stations,trains and small-world networks[J]. Physica A:Statistical Mechanics and its Applications, 2003, 339(3):635-644.

    [11]Feng J, Xu Q, Li X M, et al. Complex network study on urban rail transit systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2017,17(6):242-247.

    [12] Lee K, Jung W S, Park J S, et al. Statistical analysis of the metropolitan seoul subway system:Network structure and passenger flows[J]. Physica A:Statistical Mechanics and its Applications, 2008, 387(24):6231-6234.

    [13] Meng X L, Xiang W L, Wang L. Controllability of train service network[J]. Mathematical Problems in Engineering, 2015, 2015(4):1-8.

    [14] Zeng L, Liu J, Qin Y, et al. A passenger flow control method for subway network based on network controllability[J]. Discrete Dynamics in Nature and Society, 2018, 2018:1-12.

    [15] Yang X H, Chen G, Chen S Y, et al. Study on some bus transport networks in China with considering spatial characteristics[J]. Transportation Research Part A:Policy and Practice, 2014, 69:1-10.

    [16]Chang M X, Zhao A Q, Lv L M. Research on structural characteristics of urban rail transit network based on complex network theory[J]. Computer Systems&Applications, 2017, 26(2):254-259.

    [17] Zhang J, Zhao M, Liu H, et al. Networked characteristics of the urban rail transit networks[J]. Physica A:Statistical Mechanics and its Applications, 2013, 392(6):1538-1546.

    [18] Kalman R E. Mathematical description of linear dynamical systems[J]. Society for Industrial and Applied Mathematics, 1963, 1(2):152-192.

    [19]Wang L F, Zhao Y K, Duan L, et al. Effect of cut vertexes-removal on controllability of complex networks[J]. Control and Decision, 2019, 34(11):2310-2316.

    [20] Lin C T. Structural controllability[J]. IEEE Transactions on Automatic Control, 1974, 19(3):201-208.

    [21] Commault C, Woude J V D. A Classification of nodes for structural controllability[J]. IEEE Transactions on Automatic Control, 2019, 64(9):3877-3882.

    [22] Liu R, Li S, Yang L. Collaborative optimization for metro train scheduling and train connections combined with passenger flow control strategy[J]. Omega, 2019, DOI:10.1016/j.omega.2018.10.020.

    [23]Chen F, Wu Q B, Zhang H H, et al. Relationship analysis on station capacity and passenger flow:A case of Beijing subway line 1[J]. Journal of Transportation on Systems Engineering and Information Technology, 2009, 9(2):93-98.

    [24] Kuhn H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics, 1955, 2(1/2):83-97.

    [25] Munkres James. Algorithms for the assignment and transportation problems[J]. Journal of the Society for Industrial and Applied Mathematics, 1957, 5(1):32-38.

    [26]Beijing Metro Corporation. Passenger flow information on official website[EB/OL].(2019-04-11)[2019-07-15].https://www.bjsubway.com/support/cxyd/klxx.

    [27]Jinggang Metro Weibo. Passenger flow information on the official website[EB/OL].(2019-03-12)[2019-07-15].https://weibo.com/bjmtr.

This Article

ISSN:1001-0920

CN: 21-1124/TP

Vol 35, No. 10, Pages 2319-2328

October 2020

Downloads:2

Share
Article Outline

知识点

摘要

  • 0 引言
  • 1 交通网络模型与结构可控性
  • 2 模型改进与可控性研究
  • 3 驱动节点的识别算法在北京地铁网络中的应用
  • 4 结论
  • 参考文献