Diversity of gut bacterial communities in male adults of Odontolabis fallaciosa (Coleoptera: Scarabaeoidea: Lucanidae) with different mandibular forms

JIANG Yu1 SUN Bing-Hua1 CAO Yu-Yan1 ZHAI Yong-Ning1 WAN Xia1

(1.Department of Ecology, School of Resources & Environmental Engineering, Anhui University, Hefei, China 230601)

【Abstract】【Aim】To analyze and compare the community structure and diversity of the gut bacteria in adult males of Odontolabis fallaciosa with different mandibular forms. 【Methods】The total DNA of guts from 31 male adults of O. fallaciosa with three mandibular forms (large, medium and small mandible forms) (including 15 adult males of large mandible form, 10 adult males of medium mandible form and 6 adult males of small mandible form) were extracted. The 16S r DNA gene fragments (V3-V4 region) of gut bacteria were sequenced by Illumina Mi Seq, and the number of operational taxonomic units (OTUs), species composition, abundance, and alpha and beta diversity were analyzed. 【Results】A total of 2 238 637 high quality sequences were obtained and clustered into 3 256 OTUs at a 97% similarity threshold. Analysis showed that they could be annotated into 42 phyla, 328 families and 542 genera. Among them, four phyla (Proteobacteria, Bacteroidetes, Firmicutes and Tenericutes) were prevalent in the gut bacteria communities of male adults, and four genera (Acinetobacter, Dysgonomonas, Bartonella and Chryseobacterium) were dominant. The alpha diversity analysis showed that the gut bacteria were quite abundant in these male samples of O. fallaciosa, and the beta diversity revealed that the composition of OTUs was different among the large, medium and small mandible males. 【Conclusion】Using Illumina Mi Seq sequencing technology, the structure and composition of the gut bacterial community in adult males of O. fallaciosa were analyzed. The microbial community composition in guts of adult males of O. fallaciosa has significant difference between the large and medium mandible adult males, whereas no significant difference exists between the large and small mandible adult males, or between the medium and small mandible adult males.

【Keywords】 Odontolabis fallaciosa; gut bacteria; 16S rDNA; bacterial community composition; community diversity;


【Funds】 National Natural Science Foundation of China (31201745, 31071954, 31572311)

Download this article


    Berry D, 2016. The emerging view of Firmicutes as key fibre degraders in the human gut. Environ. Microbiol., 18 (7): 2081–2083.

    Briones-Roblero CI, Rodríguez-Díaz R, Santiago-Cruz JA, Zú1iga G, Rivera-Ordu1a FN, 2016. Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae: Scolytinae). Folia Microbiol., 62 (1): 1–9.

    Brucker RM, Bordenstein SR, 2012. Speciation by symbiosis: trends in ecology & evolution. Trends Ecol. Evol., 27 (8): 443–451.

    Cejanavarro JA, Nguyen NH, Karaoz U, Gross SR, Herman DJ, Andersen GL, Bruns TD, Pett-Ridge J, Blackwell M, Brodie EL, 2014. Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus. ISMEJ., 8 (1): 6–18.

    Chen BS, Lu XM, Shao YQ, 2017. Diversity of the gut microbiota in lepidopteran insects and their interaction with hosts. Acta Entomol. Sin., 60 (6): 710–722. (in Chinese)

    Colman DR, Toolson EC, Takacsvesbach CD, 2012. Do diet and taxonomy influence insect gut bacterial communities?Mol. Ecol., 21 (20): 5124–5137.

    Douglas AE, 2009. The microbial dimension in insect nutritional ecology. Funct. Ecol., 23 (1): 38–47.

    Douglas AE, 2015. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol., 60 (1): 17–34.

    Du L, Liu F, Zhao P, Zhao T, Doyle MP, 2017. Characterization of Enterococcus durans 152 bacteriocins and their inhibition of Listeria monocytogenes in ham. Food Microbiol., 68: 97–103.

    Engel P, Moran NA, 2013a. The gut microbiota of insects-diversity in structure and function. FEMS Microbiol. Rev., 37 (5): 699–735.

    Engel P, Moran NA, 2013b. Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes, 4 (1): 60–65.

    Evans JD, Lopez DL, 2004. Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol., 97 (3): 752–756.

    Franzini PZN, Jean-Baptiste R, Scholtz CH, Sole CL, Sandra R, Cowan DA, 2016. The gut microbiomes of two Pachysoma Macleay desert dung beetle species (Coleoptera: Scarabaeidae: Scarabaeinae)feeding on different diets. PLo S ONE, 11 (8): e0161118.

    Geib SM, Jimenez-Gasco MM, Carlson JE, Tie M, Hoover K, 2009. Effect of host tree species on cellulase activity and bacterial community composition in the gut of larval Asian longhorned beetle. Environ. Entomol., 38 (3): 686–699.

    Genta FA, Dillon RJ, Terra WR, Ferreira C, 2006. Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J. Insect Physiol., 52 (6): 593–601.

    Gotoh H, Miyakawa H, Ishikawa A, Ishikawa Y, Sugime Y, Emlen DJ, Lavine LC, Miura T, 2014. Developmental link between sex and nutrition;doublesex regulates sex-specific mandible growth via juvenile hormone signaling in stag beetles. PLo S Genet., 10 (1): e1004098.

    Goyens J, Soons J, Aerts P, Dirckx J, 2014. Finite-element modelling reveals force modulation of jaw adductors in stag beetles. J. R. Soc. Interface, 11 (101): 20140908.

    Guo J, Wu J, Deng XY, Lin LB, Liu S, Li JL, 2015. Advances in research on insect gut microbiota and their functions. J. Appl. Entomol., 52 (6): 1345–1352. (in Chinese)

    Hamdi C, Balloi A, Essanaa J, Crotti E, Gonella E, Raddadi N, Ricci I, Boudabous A, Borin S, Manino A, Bandi C, Alma A, Daffonchio D, Cherif A, 2011. Gut microbiome dysbiosis and honeybee health. J. Appl. Entomol., 135 (7): 524–533.

    Handique G, Phukan A, Bhattacharyya B, Baruah AA, Rahman SW, Baruah R, 2017. Characterization of cellulose degrading bacteria from the larval gut of the white grub beetle Lepidiota mansueta (Coleoptera: Scarabaeidae). Arch. Insect Biochem. Physiol., 94 (2): e21370.

    Harvey DJ, Gange AC, Hawes CJ, Rink M, 2011. Bionomics and distribution of the stag beetle, Lucanus cervus (L.) across Europe. Insect Conserv. Diver., 4 (1): 23–38.

    Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T, 2005. Intra-and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl. Environ. Microb., 71 (11): 6590–6599.

    Hu X, 2014. Gut-associated Microbiota Diversity of the White Pine Beetle (Dendroctonus armandi) and Cellulolytic Microbial Community in Its Larval Gut. Ph D Dissertation, Northwest A&FUniversity, Yangling, Shaanxi. (in Chinese)

    Ikedaohtsubo W, Desai M, Stingl U, Brune A, 2007. Phylogenetic diversity of‘endomicrobia’and their specific affiliation with termite gut flagellates. Microbiology, 153 (10): 3458–3465.

    Kim JM, Choi MY, Kim JW, Lee SA, Ahn JH, Song J, Kim SH, Weon HY, 2017. Effects of diet type, developmental stage, and gut compartment in the gut bacterial communities of two Cerambycidae species (Coleoptera). J. Microbiol., 55 (1): 21–30.

    Liu XG, Yang YJ, Liao QJ, Xu HX, Liu YH, Lu ZX, 2016. Analysis of the bacterial community structure and diversity in the intestine of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Acta Entomol. Sin., 59 (9): 965–976. (in Chinese)

    Martínez-Falcón AP, Durbán A, Latorre A, Antón J, 2011. Bacteria associated with Copestylum (Diptera, Syrphidae) larvae and their cactus host Isolatocereus dumortieri. PLo S ONE, 6 (11): e27443.

    Mason CJ, Lowe-Power TM, Rubert-Nason KF, Lindroth RL, Raffa KF, 2016. Interactions between bacteria and aspen defense chemicals at the phyllosphere-herbivore interface. J. Chem. Ecol., 42 (3): 193–201.

    Montagna M, Chouaia B, Mazza G, Prosdocimi EM, Crotti E, Mereghetti V, Vacchini V, Giorgi A, Biase AD, Longo S, Cervo R, Lozzia GC, Alma A, Bandi C, Daffonchioet D, 2015. Effects of the diet on the microbiota of the red palm weevil (Coleoptera: Dryophthoridae). PLo S ONE, 10 (1): e0117439.

    Neuvonen MM, Tamarit D, Näslund K, Liebig J, Feldhaar H, Moran NA, Guy L, Andersson SG, 2016. The genome of Rhizobiales bacteria in predatory ants reveals urease gene functions but no genes for nitrogen fixation. Sci. Rep., 6: 39197.

    Rowland JM, Emlen DJ, 2009. Two thresholds, three male forms result in facultative male thrimorphism in beetles. Science, 323 (5915): 773–776.

    Salmassi TM, Leadbetter JR, 2003. Analysis of genes of tetrahydrofolatedependent metabolism from cultivated spirochaetes and the gut community of the termite Zootermopsis angusticollis. Microbiology, 149 (9): 2529–2537.

    Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A, 2003. Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp. ). Appl. Environ. Microb., 69 (10): 6007–6017.

    Segers FH, Ke2nerováL, Kosoy M, Engel P, 2017. Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen. ISME J., 11 (5): 1232–1244.

    Sheng P, 2014. Diversities of Gut Microbes and Glycoside Hydrolases in Different Developmental Stages of Holotrichia parallela. Ph DDissertation. Huazhong Agricultural University, Wuhan. (in Chinese)

    Shil RK, Mojumder S, Sadida FF, Uddin M, Sikdar D, 2014. Isolation and identification of cellulolytic bacteria from the gut of three phytophagus insect species. Braz. Arch. Biol. Technol., 57: 927–932.

    Shu RH, Lu SL, Xu XL, 2011. Study on biogenic amines interaction by Enterococcus faecalis and Enterococcus faecium. Food Fermn. Ind., 37 (6): 16–20. (in Chinese)

    Sun XX, Ning N, Tan HJ, NI JF, 2017. Research progress of diversity and function of symbiotic microbes in the gut of termites. Chin. J. Appl. Environ. Biol., 23 (4): 764–770. (in Chinese)

    Suzuki K, Sakamoto H, Shinozaki Y, Tabata J, Watanabe T, Mochizuki A, Koitabashi M, Fujii T, Tsushima S, Kitamoto HK, 2013. Affinity purification and characterization of a biodegradable plasticdegrading enzyme from a yeast isolated from the larval midgut of a stag beetle, Aegus laevicollis. Appl. Microbiol. Biot., 97 (17): 7679–7688.

    Tanahashi M, Kubota K, 2013. Utilization of the nutrients in the soluble and insoluble fractions of fungal mycelium by larvae of the stag beetle, Dorcus rectus (Coleoptera: Lucanidae). Eur. J. Entomol., 110 (4): 611–615.

    Tanahashi M, Kubota K, Matsushita N, Togashi K, 2010. Discovery of mycangia and the associated xylose-fermenting yeasts in stag beetles (Coleoptera: Lucanidae). Naturwissenschaften, 97 (3): 311–317.

    Thomaes A, Kervyn T, Maes D, 2008. Applying species distribution modelling for the conservation of the threatened saproxylic stag beetle (Lucanus cervus). Biol. Conserv., 141 (5): 1400–1410.

    Tian XY, Song FP, Zhang J, Liu RM, Zhang XP, Duan JY, Shu CL, 2017. Diversity of gut bacteria in larval Protaetia brevitarsis (Coleoptera: Scarabaedia) fed on corn stalk. Acta Entomol. Sin., 60 (6): 632–641. (in Chinese)

    Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI, 2008. Marked alterations in the distal gut microbiome linked to diet-induced obesity. Cell Host Microbe, 3 (4): 213.

    Ulyshen MD, Zachos LG, Stireman JO, Sheehan TN, Garrick RC, 2017. Insights into the ecology, genetics and distribution of Lucanus elaphus Fabricius (Coleoptera: Lucanidae), North America’s giant stag beetle. Insect Conserv. Divers., 10 (4): 331–340.

    Wang J, Hui C, Ming T, 2017. Community structure of gut bacteria of Dendroctonus armandi (Coleoptera: Curculionidae: Scolytinae) larvae during overwintering stage. Sci. Rep., 7 (1): 14242.

    Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NF, Zhou HW, 2012. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina tags. Appl. Environ. Microb., 78 (23): 8264–8271.

    Werren JH, Windsor DM, 2000. Wolbachia infection frequencies in insects: evidence of a global equilibrium?Proc. Biol. Sci., 267 (1450): 1277–1285.

    Wong AC, Chaston JM, Douglas AE, 2013. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J., 7 (10): 1922–1932.

    Xiang H, Huang YP, 2008. Symbiosis between gut microbiota and insects. Chin. Bull. Entomol., 45 (5): 687–693. (in Chinese)

    Xiang XJ, He D, He JS, Myrold DD, Chu H, 2017. Ammonia-oxidizing bacteria rather than archaea respond to short-term urea amendment in an alpine grassland. Soil Biol. Biochem., 107: 218–225.

    Yang H, 2004. Structure and Diversity of the Bacterial Community in the Gut of Wood-Feeding Lower Termites (Reticulitermes spp. ). Ph DDissertation, Huazhong Agricultural University, Wuhan. (in Chinese)

    Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, Yoon C, Nam YD, Kim YJ, Choi JH, Kim JY, Shin NR, Kim SH, Lee WJ, Bae JW, 2014. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microb., 80 (17): 5254–5264.

    Zhang W, Zheng Y, Wang YF, 2017. Effects of Wolbachia infection on the expression of DNA 6m A demethylase gene DMAD in gonads and early embryos of Drosophila melanogaster. Acta Entomol. Sin., 60 (11): 1292–1299. (in Chinese)

This Article


CN: 11-1832/Q

Vol 61, No. 03, Pages 322-330

March 2018


Article Outline


  • 1 Materials and methods
  • 2 Results
  • 3 Discussion
  • References