Side-by-side Chinese-English

形状记忆合金超弹性螺旋弹簧的力学模型

周博1 王志勇1 薛世峰1

(1.中国石油大学 (华东) 储运与建筑工程学院, 青岛 266580)
【知识点链接】形状记忆合金

【摘要】结合普通金属螺旋弹簧的弹性变形理论和形状记忆合金 (SMA) 的力学本构模型, 分析与描述SMA螺旋弹簧的簧丝横截面上应变、应力分布规律, 进而推导SMA螺旋弹簧的相变临界参数计算公式。基于SMA螺旋弹簧的宏观试验现象和推导的相变临界参数计算公式, 建立描述SMA螺旋弹簧的轴向变形和轴向外力间关系的力学模型。理论计算与试验结果的对比表明, 建立的SMA螺旋弹簧力学模型能准确预测SMA螺旋弹簧的轴向外力和轴向变形间的关系, 并克服有限单元法模拟计算SMA螺旋弹簧时在几何建模和数值收敛等方面的局限性, 可为研究SMA螺旋弹簧的力学行为和基于SMA螺旋弹簧的结构设计提供必要的理论基础和技术参考。

【关键词】 形状记忆合金;螺旋弹簧;相变临界参数;力学模型;

【DOI】

【基金资助】 国家重点研发计划资助项目 (2017YFC0307604) ;

Mechanical Model for Super-elastic Helical Spring of Shape Memory Alloy

ZHOU Bo1 WANG Zhiyong1 XUE Shifeng1

(1.College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580)
【Knowledge Link】shape memory alloy

【Abstract】The distributions of strain and stress in the section of the shape memory alloy (SMA) wire of a helical spring are analyzed and described based on the deformation theory of ordinary helical springs and the constitutive model of SMAs. Then the formulas are derived to calculate the phase-transition critical parameters of SMA helical springs. A mechanical model, which expresses the relation between axial force and axial deformation of SMA helical springs, is developed based on the experimental phenomena and the formulas of phase-transition critical parameters of SMA helical springs. Results show that the developed mechanical model is able to predict the relation between axial force and axial deformation of SMA helical springs and overcome the limitations of the finite element method in geometric modeling and numerical convergence. Therefore, it can serve as a theoretical basis and technical reference for the investigation on the mechanical behavior of SMA helical springs and the structural design based on SMA helical springs.

【Keywords】 shape memory alloy; helical spring; phase transition critical parameter; mechanical model;

【DOI】

【Funds】 National Key R&D Program of China (2017YFC0307604);

Download this article
    References

    [1] YU Dong, ZHANG Boming, JIN Longxue, et al. Structural design method of rotation gear actuated by shape memory alloys [J]. J. Mech. Eng., 2010, 46 (14): 91–94 (in Chinese).

    [2] SHI Z, WANG T, LIU D, et al. A fuzzy PID-controlled SMA actuator for a two-DOF joint [J]. Chin. J. Aeronaut., 2014, 27 (2): 453–460.

    [3] DENG Zongcai, LI Qingbin. Actuating effects of embedded shape memory alloy on fiber reinforced polymer beam [J]. Chin. Civ. Eng. J., 2002, 35 (2): 41–47 (in Chinese).

    [4] LI Hu, MAO Chenxi. Experimental investigation of earthquake response reduction of buildings with added two types of SMA passive energy dissipation devices [J]. Earthq. Eng. Eng. Vibrat., 2003, 23 (1): 133–139 (in Chinese).

    [5] CHEN Xin, LI Aiqun, DING Youliang, et al. Study on isolation of space grid structure using shape memory alloy [J]. Eng. Mech., 2010, 27 (9): 86–93 (in Chinese).

    [6] REN Wenjie, LI Hongnan, SONG Gangbing, et al. Study on seismic response control of frame structure using innovative re-centring [J] SMA damper. Chin. Civ. Eng. J., 2013 (6): 14–20 (in Chinese).

    [7] KOH J S, CHO K J. Omega-shaped inchworm-inspired crawling robot with large-index-and-pitch (LIP) SMA spring actuators [J]. IEEE-ASME T. Mech., 2013, 18 (2): 419–429.

    [8] FRANCESCO B, MOHAMMAD E, PAOLA F, et al. Apassive magneto-thermo-mechanical coupling actuated by SMA springs and MR fluid [J]. Iint. J. Struct. Stab. Dyn., 2014, 14 (8): 1463–1482.

    [9] SPEICHER M, HODGSON D E, DESROCHES R, et al. Shape memory alloy tension/compression device for seismic retrofit of buildings [J]. J. Mater. Eng. Perform., 2009, 18 (5–6): 746–753.

    [10] CAI Jinrong, LIU Shutang. Seismic response analysis of transmission tower with SMA spring-bearing [J]. Guangdong Archit. Civ. Eng., 2009 (5): 14–17 (in Chinese).

    [11] LIU Airong, PAN Yisu, ZHOU Benkuan. Deformation analysis of SMA springs and its application to vibration control [J]. J. Southwest. Jiaotong. Univ., 2000, 35 (1): 81–85 (in Chinese).

    [12] HE Zhirong, ZHANG Yonghong, WANG Yongshan, et al. Transformation and deformation characteristics of Ti49. 4Ni50. 6 superelastic spring [J]. Acta Metall. Sin., 2004, 40 (1): 46–50 (in Chinese).

    [13] TOI Y, LEE J B, TAYA M. Finite element analysis of superelastic, large deformation behavior of shape memory alloy helical springs [J]. Comput. Struct., 2004, 82 (20–21): 1685–1693.

    [14] MIRZAEIFAR R, DESROCHES R, YAVARI A. Acombined analytical, numerical, and experimental study of shape-memory-alloy helical springs [J]. Int. J. Solids Struct., 2011, 48 (3–4): 611–624.

    [15] AGUIAR R A A, SAVI M A, PACHECO P M C L. Experimental and numerical investigations of shape memory alloy helical springs [J]. Smart Mater. Struct., 2010, 19 (19): 025008.

    [16] HEIDARI B, KADKHODAEI M, BARATI M, et al. Fabrication and modeling of shape memory alloy springs [J]. Smart Mater. Struct., 2016, 25 (12): 125003.

    [17] ZHUANG Peng, NIE Pan, XUE Suduo, et al. Hysteretic performance of large scale superelastic NITI shape memory alloy helical spring [J]. J. Archit. Civil Eng., 2016, 33 (2): 114–120 (in Chinese).

    [18] ZHUANG Peng, XUE Suduo, HAN Miao, et al. Numerical simulation of restoring force of superelastic shape memory alloy helical spring [J]. World Earthq. Eng., 2016 (1): 237–244 (in Chinese).

    [19] TANAKA K, KOBAYASHI S, SATO Y. Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys [J]. Int. J. Plast., 1986, 2 (1): 59–72.

    [20] BRINSON L C. One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable [J]. J. Mech. Phy. Solids. 1993, 2 (2): 229–242.

    [21] ZHOU Bo, WANG Zhenqing, LIANG Wenyan. A micromechanical constitutive model of shape memory alloys [J]. Acta Metall. Sin., 2006, 42 (9): 919–924 (in Chinese).

    [22] ZHOU Bo, LIU Yanju, LENG Jinsong, et al. Amacro-mechanical constitutive model of shape memory alloys [J]. Sci. Chin. Ser. G., 2009, 52 (9): 998–1006 (in Chinese).

    [23] ZHOU B, YOON S H, LENG J S. A three-dimensional constitutive model for shape memory alloy [J]. Smart. Mater. Struct., 2009, 18 (9): 095016.

    [24] LAGOUDAS D, HARTL D, CHEMISKY Y, et al. Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys [J]. Int. J. Plast., 2012, s 32–33 (2): 155–183.

    [25] RIZZONI R, MARFIA S. A thermodynamical formulation for the constitutive modeling of a shape memory alloy with two martensite phases [J]. Meccanica, 2015, 50 (4): 1121–1145.

This Article

ISSN:0577-6686

CN: 11-2187/TH

Vol 55, No. 08, Pages 56-64

April 2019

Downloads:0

Share
Article Outline

Knowledge

Abstract

  • 0 Introduction
  • 1 SMA macroscopic constitutive model
  • 2 A mechanical model of SMA helical springs
  • 3 Example analysis
  • 4 Conclusion
  • References