形状记忆合金超弹性螺旋弹簧的力学模型

周博1 王志勇1 薛世峰1

(1.中国石油大学 (华东) 储运与建筑工程学院, 青岛 266580)
【知识点链接】形状记忆合金

【摘要】结合普通金属螺旋弹簧的弹性变形理论和形状记忆合金 (SMA) 的力学本构模型, 分析与描述SMA螺旋弹簧的簧丝横截面上应变、应力分布规律, 进而推导SMA螺旋弹簧的相变临界参数计算公式。基于SMA螺旋弹簧的宏观试验现象和推导的相变临界参数计算公式, 建立描述SMA螺旋弹簧的轴向变形和轴向外力间关系的力学模型。理论计算与试验结果的对比表明, 建立的SMA螺旋弹簧力学模型能准确预测SMA螺旋弹簧的轴向外力和轴向变形间的关系, 并克服有限单元法模拟计算SMA螺旋弹簧时在几何建模和数值收敛等方面的局限性, 可为研究SMA螺旋弹簧的力学行为和基于SMA螺旋弹簧的结构设计提供必要的理论基础和技术参考。

【关键词】 形状记忆合金; 螺旋弹簧; 相变临界参数; 力学模型;

【DOI】

【基金资助】 国家重点研发计划资助项目 (2017YFC0307604)

Download this article

    References

    [1]YU Dong, ZHANG Boming, JIN Longxue, et al.Structural design method of rotation gear actuated by shape memory alloys[J].J.Mech.Eng., 2010, 46 (14) :91-94.

    [2]SHI Z, WANG T, LIU D, et al.A fuzzy PID-controlled SMA actuator for a two-DOF joint[J].Chin.J.Aeronaut., 2014, 27 (2) :453-460.

    [3]DENG Zongcai, LI Qingbin.Actuating effects of embedded shape memory alloy on fiber reinforced polymer beam[J].Chin.Civ.Eng.J., 2002, 35 (2) :41-47.

    [4]LI Hu, MAO Chenxi.Experimental investigation of earthquake response reduction of buildings with added two types of SMA passive energy dissipation devices[J].Earthq.Eng.Eng.Vibrat., 2003, 23 (1) :133-139.

    [5]CHEN Xin, LI Aiqun, DING Youliang, et al.Study on isolation of space grid structure using shape memory alloy[J].Eng.Mech., 2010, 27 (9) :86-93.

    [6]REN Wenjie, LI Hongnan, SONG Gangbing, et al.Study on seismic response control of frame structure using innovative re-centring[J]SMA damper.Chin.Civ.Eng.J., 2013 (6) :14-20.

    [7]KOH J S, CHO K J.Omega-shaped inchworm-inspired crawling robot with large-index-and-pitch (LIP) SMAspring actuators[J].IEEE-ASME T.Mech., 2013, 18 (2) :419-429.

    [8]FRANCESCO B, MOHAMMAD E, PAOLA F, et al.Apassive magneto-thermo-mechanical coupling actuated by SMA springs and MR fluid[J].Iint.J.Struct.Stab.Dyn., 2014, 14 (8) :1463-1482.

    [9]SPEICHER M, HODGSON D E, DESROCHES R, et al.Shape memory alloy tension/compression device for seismic retrofit of buildings[J].J.Mater.Eng.Perform., 2009, 18 (5-6) :746-753.

    [10]CAI Jinrong, LIU Shutang.Seismic response analysis of transmission tower with SMA spring-bearing[J].Guangdong Archit.Civ.Eng., 2009 (5) :14-17.

    [11]LIU Airong, PAN Yisu, ZHOU Benkuan.Deformation analysis of SMA springs and its application to vibration control[J].J.Southwest.Jiaotong.Univ., 2000, 35 (1) :81-85.

    [12]HE Zhirong, ZHANG Yonghong, WANG Yongshan, et al.Transformation and deformation characteristics of Ti49.4Ni50.6 superelastic spring[J].Acta Metall.Sin., 2004, 40 (1) :46-50.

    [13]TOI Y, LEE J B, TAYA M.Finite element analysis of superelastic, large deformation behavior of shape memory alloy helical springs[J].Comput.Struct., 2004, 82 (20-21) :1685-1693.

    [14]MIRZAEIFAR R, DESROCHES R, YAVARI A.Acombined analytical, numerical, and experimental study of shape-memory-alloy helical springs[J].Int.J.Solids Struct., 2011, 48 (3-4) :611-624.

    [15]AGUIAR R A A, SAVI M A, PACHECO P M C L.Experimental and numerical investigations of shape memory alloy helical springs[J].Smart Mater.Struct., 2010, 19 (19) :025008.

    [16]HEIDARI B, KADKHODAEI M, BARATI M, et al.Fabrication and modeling of shape memory alloy springs[J].Smart Mater.Struct., 2016, 25 (12) :125003.

    [17]ZHUANG Peng, NIE Pan, XUE Suduo, et al.Hysteretic performance of large scale superelastic NITI shape memory alloy helical spring[J].J.Archit.Civil Eng., 2016, 33 (2) :114-120.

    [18]ZHUANG Peng, XUE Suduo, HAN Miao, et al.Numerical simulation of restoring force of superelastic shape memory alloy helical spring[J].World Earthq.Eng., 2016 (1) :237-244.

    [19]TANAKA K, KOBAYASHI S, SATO Y.Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys[J].Int.J.Plast., 1986, 2 (1) :59-72.

    [20]BRINSON L C.One-dimensional constitutive behavior of shape memory alloys:Thermomechanical derivation with non-constant material functions and redefined martensite internal variable[J].J.Mech.Phy.Solids.1993, 2 (2) :229-242.

    [21]ZHOU Bo, WANG Zhenqing, LIANG Wenyan.A micromechanical constitutive model of shape memory alloys[J].Acta Metall.Sin., 2006, 42 (9) :919-924.

    [22]ZHOU Bo, LIU Yanju, LENG Jinsong, et al.Amacro-mechanical constitutive model of shape memory alloys[J].Sci.Chin.Ser.G., 2009, 52 (9) :998-1006.

    [23]ZHOU B, YOON S H, LENG J S.A three-dimensional constitutive model for shape memory alloy[J].Smart.Mater.Struct., 2009, 18 (9) :095016.

    [24]LAGOUDAS D, HARTL D, CHEMISKY Y, et al.Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys[J].Int.J.Plast., 2012, s 32-33 (2) :155-183.

    [25]RIZZONI R, MARFIA S.A thermodynamical formulation for the constitutive modeling of a shape memory alloy with two martensite phases[J].Meccanica, 2015, 50 (4) :1121-1145.

This Article

ISSN:0577-6686

CN: 11-2187/TH

Vol 55, No. 08, Pages 56-64

April 2019

Downloads:0

Share
Article Outline

知识点

摘要

  • 0前言
  • 1 SMA宏观本构模型
  • 2 SMA螺旋弹簧力学模型
  • 3 算例分析
  • 4 结论
  • 参考文献