航行姿态对半滑行三体船型静水阻力影响的数值研究

贾敬蓓1 宗智2,3,4 金国庆2,3 王海英1

(1.大连海洋大学航海与船舶工程学院, 辽宁大连 116023)
(2.大连理工大学船舶工程学院, 辽宁大连 116024)
(3.工业装备结构分析国家重点实验室, 辽宁大连 116024)
(4.辽宁省深海浮动结构工程实验室, 辽宁大连 116024)

【摘要】[目的]半滑行船型(弗劳德数Fr>0.4)的航行姿态(升沉和纵倾)对船舶阻力性能影响显著,重点探讨半滑行状态下航行姿态对三体船型阻力成分(摩擦阻力和压差阻力)的影响规律。[方法]采用k-ε湍流模型,使用重叠网格技术,对三体船型的静水阻力问题进行CFD数值模拟研究。计算三体船的2种状态(自由航行状态和固定航行姿态的状态),比较上述状态下的阻力成分,分析航行姿态对阻力成分的影响规律。[结果]计算结果表明,在半滑行状态下,由航行姿态引起的总阻力变化超过20%;航行姿态变化对压差阻力影响显著,约高达50%,而对摩擦阻力的影响则相对较小,不到8.5%;由航行姿态引起的阻力增加,90%以上来自压差阻力的变化。[结论]准确预报航行姿态及由此产生的压差阻力变化对半滑行三体船型非常重要。

【关键词】 半滑行; 三体船; 阻力; 升沉和纵倾;

【DOI】

【基金资助】 国家自然科学基金面上项目资助(51679037) 国家自然科学基金重点项目资助(51639003) 国家重点基础研究发展计划资助(2013CB036101)

Download this article

    References

    [1]JIANG C P, SHAO S R. Ship resistance[M]. Shanghai:Shanghai Jiao Tong University Press, 1985:32-36(in Chinese).

    [2]JACKSON J. Fast trimaran ferry for islands run"Benchijigua Express"[J]. Engineers Australia, 2015,77(2):42–43.

    [3]LU X P, WANG Z. R&D and procurement of U.S.navy ships[M]. Beijing:Publishing House of Electronics Industry, 2010:55-56(in Chinese).

    [4]LIU X W, ZHAN K Y, WAN D C. Optimization of the main ship form and the space between sidehulls based on potential flow theory[C]//Proceedings of the 19th China Ocean(Shore)Engineering Symposium. Chongqing, 2019:203-208(in Chinese).

    [5]DAI Y X, ZHANG Z Y, LIU J G, et al. Numerical simulation of resistance and self-propulsion performance for water-jet propelled trimaran[J]. Ship&Boat,2019, 30(1):105–111(in Chinese).

    [6]ZHANG M X, HAN B B, LU P C, et al. Impact analysis of mesh factors and turbulence models on resistance calculation of trimaran[J]. Journal of Wuhan University of Technology(Transportation Science&Engineering), 2019, 43(5):876–881(in Chinese).

    [7]ZONG Z, HONG Z C, WANG Y G, et al. Hull form optimization of trimaran using self-blending method[J].Applied Ocean Research, 2018, 80:240–247.

    [8]CUI Y, LU X P. Trimaran center hull optimization based on linear wave resistance theory[J]. Ship Engineering, 2018, 40(1):32–36(in Chinese).

    [9]YANG C, LÖHNER R. Calculation of ship sinkage and trim using a finite element method and unstructured grids[J]. International Journal of Computational Fluid Dynamics, 2002, 16(3):217–227.

    [10]WANG Z, LU X P, FU P. Calculation of the sinkage and trim of trimaran and their effect on wave making resistance[J]. Journal of Shanghai Jiaotong University,2010, 44(10):1388–1392(in Chinese).

    [11]NI C B, ZHU R C, MIAO G P, et al. The resistance prediction for high speed multi-hull vessels with consideration of hull gesture variation during voyage[J].Chinese Journal of Hydrodynamics(Ser.A), 2011, 26(1):101–107(in Chinese).

    [12]DENG R, LI C, HUANG D B, et al. The effect of trimming and sinkage on the trimaran resistance calculation[J]. Procedia Engineering, 2015, 126:327–331.

    [13]ZHOU G L, AI Z T, DENG R, et al. Resistance prediction method research of high speed trimaran[J]. Journal of Ship Mechanics, 2016, 20(7):805–815(in Chinese).

    [14]YEUNG R W. Sinkage and trim in first-order thin-ship theory[J]. Journal of Ship Research, 1972, 16(1):47–59.

    [15]LI K, ZONG Z, SUN L. Estimation method of the viscous resistance for trimarans[J]. Chinese Journal of Ship Research, 2013, 8(4):27–35(in Chinese).

    [16]VERSTEEG H K, MALALASEKERA W. An introduction to computational fluid dynamics:the finite volume method[M]. England:Longman Scientific&Technical,1995.

    [17]WANG F J. Computational fluid dynamics analysis-principles and applications of CFD software[M]. Beijing:Tsinghua University Press, 2004:114-122(in Chinese).

    [18]JIA J B. Experimental study of resistance and motion characteristics of trimaran hull form[D]. Dalian:Dalian University of Technology, 2010(in Chinese).

This Article

ISSN:1673-3185

CN:42-1755/TJ

Vol 15, No. 06, Pages 106-114

December 2020

Downloads:2

Share
Article Outline

摘要

  • 0 引言
  • 1 问题描述
  • 2 计算模型
  • 3 数值计算结果
  • 4 结论
  • 参考文献