Side-by-side Chinese-English

短路冲击作用下电力推进装置扭振计算与分析

李增光1 赵辉1 周宁2

(1.中国舰船研究设计中心, 上海 201108)
(2.中国大洋矿产资源研究开发协会, 北京 100045)

【摘要】[目的]对于电力推进装置,推进电机短路故障时的瞬态扭矩激励峰值很大,对推进系统的运行安全影响较大。为此,提出一种短路故障工况下推进装置扭振计算方法。[方法]根据船舶推进装置扭振分析理论,建立系统的时域扭振计算模型,给出短路时推进电机瞬态冲击扭矩作用下系统的响应计算方法。基于此,建立某电力推进装置的计算模型,对其扭振固有特性及3极和2极短路故障时的系统扭振响应进行计算与分析。[结果]结果表明,系统动态特性对短路冲击扭矩的传递具有重要影响,其中,高于系统第1阶弹性模态频率的扭矩成分在传递至推进器端时的衰减很大,推进器处的动态扭矩以第1阶弹性模态频率成分为主,而在推进电机与传动轴-推进器之间设置高弹性联轴器,能大幅衰减冲击扭矩引起的动态响应;瞬态扭矩响应最大值随着电机转速的增加而增加,交变扭矩可达到数倍平均扭矩,由此引起齿轮传动装置的齿面敲击,且传动部件瞬时扭转应力较大。[结论]提出的时间域扭振模型及方法可用于电力推进装置在短路瞬态冲击作用下的响应计算分析,在设计阶段对短路冲击作用下的扭振响应进行校核非常必要,可提高电力推进装置运行的安全性。

【关键词】 电力推进装置;扭转振动;短路故障;冲击;

【DOI】

Calculation and analysis of torsional vibration of electrical propulsion system under a short-circuit-induced impulse load

LI Zengguang1 ZHAO Hui1 ZHOU Ning2

(1.Shanghai Division, China Ship Development and Design Center, Shanghai, China 201108)
(2.China Ocean Mineral Resources R&D Association, Beijing, China 100045)

【Abstract】[Objectives] For an electrical propulsion system, the transient torque induced by short-circuit faults is so large that it will exert a great impact on the safety of the shipboard electrical propulsion system. In order to evaluate the problem, we propose a simulation method for analyzing the torsional vibration of a propulsion system under a short-circuit-induced torque impulse in the time domain. [Methods] On the basis of the torsional vibration analysis theory, a time-domain model is developed, and the system response to a transient torque impulse induced by a short-circuit fault is expressed. Then by using the proposed simulation model, we calculate and analyze the natural frequencies and response to the transient torque impulse for an electrical propulsion system. [Results] The simulation results show that the dynamic characteristics of the system have a prominent role in the transmission of torque impulse, and components at frequencies above the first resonance frequency see a substantial reduction, so the torque response of the propeller is mainly based on the first resonance frequency component. If an elastic coupling is inserted into the propulsion motor and the shafting, the torque response of the system can be significantly decreased. The peak value increases with motor speed, and vibratory torque can reach several times the value of the mean torque, causing the gears to rattle and the torsion vibratory stress to grow as a result. [Conclusions] The proposed simulation modeling method is suitable for analyzing the torsional vibration response of an electrical propulsion system subject to a short-circuit-induced impulse load, and numerical calculations should be carried out to check the reliability of the system during the design process.

【Keywords】 electrical propulsion system; torsional vibration; short-circuit fault; impulse;

【DOI】

Download this article
    References

    [1] ZHAO P C. Torsional vibration mechanism and safety analysis of turbo-generator shafts [D]. Beijing: North China Electric Power University, 2019 (in Chinese).

    [2] LI X Q. Characteristics research of shaft vibration in special conditions [D]. Harbin: Harbin Engineering University, 2014 (in Chinese).

    [3] XIA K, SUN Y H, ZHANG F. The coupled electromechanical analysis for gas turbine generators during short circuit fault [J]. Chinese Journal of Applied Mechanics, 2016, 33 (1): 55–60 (in Chinese).

    [4] CHEN Q, CAI L Q, LI X Q, et al. The response analysis due to short-circuit faults for the vibration isolator in a diesel generator set [J]. Chinese Journal of Ship Research, 2013, 8 (3): 66–72 (in Chinese).

    [5] TSAI J I. Design of a short-time compensation capacitor for turbine blade vibration suppression [J]. Electric Power Systems Research, 2007, 77 (12): 1619–1626.

    [6] OGIDI O O, BARENDSE P S, KHAN M A. Fault diagnosis and condition monitoring of axial-flux permanent magnet wind generators [J]. Electric Power Systems Research, 2016, 136: 1–7.

    [7] XIANG L, YANG S X, TANG G J, et al. Time-frequency analysis on torsional vibration of turbo-generator shafts [J]. Journal of Chinese Society of Power Engineering, 2011, 31 (9): 649–654, 671 (in Chinese).

    [8] ZHANG H Y, SHI W F. Simulation on 3-phase short circuit faults of ship power system [J]. Journal of Shanghai Maritime University, 2013, 34 (3): 43–47 (in Chinese).

    [9] CHEN Z Y. Propulsion shafting vibration of ship [M]. Shanghai: Shanghai Jiao Tong University Press, 1987 (in Chinese).

    [10] COOK R D, MALKUS D S, PLESHA M E, et al. Concepts and applications of finite element analysis [M]. 4th ed. New York: John Wiley & Sons, 2002: 407–411.

    [11] Vulkan GmbH & Co. KG. Torsional vibration calculation: Report No. 10_17_1.029 [R]. Herne, Germany: Vulkan GmbH & Co. KG, 2017.

This Article

ISSN:1673-3185

CN:42-1755/TJ

Vol 15, No. 06, Pages 60-65

December 2020

Downloads:4

Share
Article Outline

Abstract

  • 0 Introduction
  • 1 Calculation model and method
  • 2 Model parameters and calculation analysis
  • 3 Conclusions
  • References