双响应性嵌段聚合物的纳米孔开关效应的计算机模拟

陈政1 王莉1 周健1

(1.华南理工大学化学与化工学院广东省绿色化学产品技术重点实验室, 广东广州 510640)
【知识点链接】聚合物

【摘要】利用计算机模拟方法 (耗散粒子动力学) 研究了双响应性嵌段聚合物修饰的纳米孔的开关效应。通过在纳米孔内接枝具有温度和pH响应的嵌段聚合物 (N-异丙基丙烯酰胺和丙烯酸) , 研究不同嵌段序列 (即wallPNIPAM-PAA或wall-PAA-PNIPAM) 对纳米孔开关效应的影响, 结果表明, 只有wall-PNIPAM-PAA嵌段序列可以实现纳米孔在不同条件下的开关效应。同时还探究了接枝密度、链长和嵌段比例对纳米孔开关效应的影响, 结果表明, 中高等接枝密度、适合的链长和中等比例的嵌段比可以实现不同特征的纳米孔, 用于控制纳米孔的开关效应。

【关键词】 计算机模拟; 纳米孔; 聚合物; pH响应性; 温度响应性; 开关效应;

【DOI】

【基金资助】 国家自然科学基金项目 (21776093) 广东省自然科学基金项目 (2014A030312007)

Download this article

    References

    [1] Xie R, Li Y, Chu L Y. Preparation of thermo-responsive gating membranes with controllable response temperature[J]. J.Membrane Sci., 2007, 289 (1/2) :76-85.

    [2] Chen W L, Menzel M, Prucker O, et al. Morphology of nanostructured polymer brushes dependent on production and treatment[J]. Macromolecules, 2017, 50 (12) :4715-4724.

    [3] Emilsson G, Schoch R L, Oertle P, et al. Surface plasmon resonance methodology for monitoring polymerization kinetics and morphology changes of brushes—evaluated with poly (Nisopropylacrylamide) [J]. Appl. Surf. Sci., 2017, 396:384-392.

    [4] De Groot G W, Santonicola M G, Sugihara K, et al. Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability[J]. ACS Appl. Mater. Interfaces, 2013, 5 (4) :1400-1407.

    [5] Gajda M, Ulbricht M. Capillary pore membranes with grafted diblock copolymers showing reversibly changing ultrafiltration properties with independent response to ions and temperature[J].J. Membrane Sci., 2016, 514:510-517.

    [6] Zhai Q, Jiang H, Zhang X, et al. Smart modification of the single conical nanochannel to fabricate dual-responsive ion gate by selfinitiated photografting and photopolymerization[J]. Talanta, 2016, 149:280-284.

    [7] Friebe A, Ulbricht M. Cylindrical pores responding to two different stimuli via surface-initiated atom transfer radical polymerization for synthesis of grafted diblock copolymers[J].Macromolecules, 2009, 42:1838-1848.

    [8] Zhang L X, Cai S L, Zheng Y B, et al. Smart homopolymer modification to single glass conical nanopore channels:dualstimuli-actuated highly efficient ion gating[J]. Adv. Funct. Mater., 2011, 21 (11) :2103-2107.

    [9] Tagliazucchi M, Azzaroni O, Szleifer I. Responsive polymers endtethered in solid-state nanochannels:when nanoconfinement really matters[J]. J. Am. Chem. Soc., 2010, 132 (35) :12404-12411.

    [10] Barsbay M, Guven O. Grafting in confined spaces:functionalization of nanochannels of track-etched membranes[J].Radiat. Phys. Chem., 2014, 105:26-30.

    [11] Shibayama M. Volume phase transition and related phenomena of polymer gels[M]//Tanaka T. Responsive Gels:Volume Transitions I. Berlin Heidelberg:Springer, 1993:1-62.

    [12] Kieviet B D, Schon P M, Vancso G J. Stimulus-responsive polymers and other functional polymer surfaces as components in glass microfluidic channels[J]. Lab Chip, 2014, 14 (21) :4159-4170.

    [13] Tokarev I, Minko S. Multiresponsive, hierarchically structured membranes:new, challenging, biomimetic materials for biosensors, controlled release, biochemical gates, and nanoreactors[J]. Adv. Mater., 2009, 21 (2) :241-247.

    [14] Chu L Y, Li Y, Zhu J H, et al. Control of pore size and permeability of a glucose-responsive gating membrane for insulin delivery[J]. J. Control Release, 2004, 97 (1) :43-53.

    [15] Lewis S R, Datta S, Gui M, et al. Reactive nanostructured membranes for water purification[J]. P. Natl. Acda. Sci. USA, 2011, 108 (21) :8577-8582.

    [16] Groot R D, Warren P B. Dissipative particle dynamics:bridging the gap between atomistic and mesoscopic simulation[J]. J. Chem.Phys., 1997, 107 (11) :4423-4435.

    [17] Groot R D. Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants[J]. J. Chem. Phys., 2003, 118 (24) :11265-11277.

    [18] Gonzalez-Melchor M, Mayoral E, Velazquez M E, et al.Electrostatic interactions in dissipative particle dynamics using the Ewald sums[J]. J. Chem. Phys., 2006, 125 (22) :224107.

    [19] Mai J L, Sun D L, Quan X B, et al. Mesoscopic structure of nafionionic liquid membrane using dissipative particle dynamics simulations[J]. Acta Phys.-Chim. Sin., 2016, 32 (7) :1649-1657.

    [20] Mai J L, Sun D L, Li L B, et al. Phase behavior of an amphiphilic block copolymer in ionic liquid:a dissipative particle dynamics study[J]. J. Chem. Eng. Data, 2016, 61 (12) :3998-4005.

    [21] Wang C, Quan X B, Liao M R, et al. Computer simulations on the channel membrane formation by nonsolvent induced phase separation[J]. Macromol. Theor. Simul., 2017, 26 (5) :1700027.

    [22]Wang L, Wang C, Zhou J. Dissipative particle dynamics simulations on the pH-responsive gating of block copolymer brush modified nanopores[J]. Chem. J. Chinese U., 2018, 39 (1) :85-94.

    [23] Byun H, Hong B, Nam S Y, et al. Swelling behavior and drug release of poly (vinyl alcohol) hydrogel cross-linked with poly (acrylic acid) [J]. Macromol. Res., 2008, 16 (3) :189-193.

    [24] Posel Z, Svoboda M, Colina C M, et al. Flow and aggregation of rod-like proteins in slit and cylindrical pores coated with polymer brushes:an insight from dissipative particle dynamics[J]. Soft Matter, 2017, 13 (8) :1634-1645.

    [25] Groot R D, Madeen T J. Dynamic simulation of diblock copolymer microphase separation[J]. J. Phys. Chem. C, 1998, 108 (20) :8713-8724.

    [26] Groot R D, Rabone K L. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants[J]. Biophys. J., 2001, 81 (2) :725-736.

    [27] Min W F, Zhao D H, Quan X B, et al. Computer simulations on the pH-sensitive tri-block copolymer containing zwitterionic sulfobetaine as a novel anti-cancer drug carrier[J]. Colloids Surf.B Biointerfaces, 2017, 152:260-268.

    [28] Luo T, Lin S, Xie R, et al. pH-responsive poly (ether sulfone) composite membranes blended with amphiphilic polystyreneblock-poly (acrylic acid) copolymers[J]. J. Membrane Sci., 2014, 450:162-173.

    [29]You L Y, Zhao Y, Wang S, et al. Morphology of linear diblock copolymer micelle under lid-driven flow[J]. Chem. J. Chinese U., 2009, 30 (9) :1784-1788.

    [30]Li Y C, Liu H, Huang X R, et al. Dissipative particle dynamics study of homopolymer adsorb on micelle in non-equilibrium state[J]. Chem. J. Chinese U., 2011, 32 (8) :1845-1848.

    [31] Guo H Y, Qiu X B, Zhou J. Self-assembled core-shell and janus microphase separated structures of polymer blends in aqueous solution[J]. J. Chem. Phys., 2013, 139 (8) :084907.

    [32]Guo H Y, Cui J M, Sun D L, et al. Dissipative particle dynamics simulation on phase behavior of thermo-responsive amphiphilic copolymer PCL-PNIPAM-PCL[J]. CIESC Journal, 2012, 63 (11) :3707-3715.

    [33] Seaton M A, Anderson R L, Metz S, et al. Dl_meso:highly scalable mesoscale simulations[J]. Mol. Simulat., 2013, 39 (10) :796-821.

    [34] Su Y X, Quan X B, Li L B, et al. Computer simulation of DNA condensation by PAMAM dendrimer[J]. Macromol. Theor. Simul., 2018, 27 (2) :1700070.

    [35]Su Y X, Quan X B, Min W F, et al. Dissipative particle dynamics simulations on loading and release of doxorubicin by PAMAM dendrimers[J]. CIESC Journal, 2017, 68 (5) :1757-1766.

    [36] Sarkisov L, Harrison A. Computational structure characterisation tools in application to ordered and disordered porous materials[J].Mol. Simulat., 2011, 37 (15) :1248-1257.

    [37] Chu L Y, Xie R, Ju X J. Stimuli-responsive membranes:smart tools for controllable mass-transfer and separation processes[J].Chin. J. Chem. Eng., 2011, 19 (6) :891-903.

    [38] Weidman J L, Mulvenna R A, Boudouris B W, et al. Unusually stable hysteresis in the pH-response of poly (acrylic acid) brushes confined within nanoporous block polymer thin films[J]. J. Am.Chem. Soc., 2016, 138 (22) :7030-7039.

This Article

ISSN:0438-1157

CN: 11-1946/TQ

Vol 70, No. 01, Pages 271-279

January 2019

Downloads:1

Share
Article Outline

知识点

摘要

  • 引言
  • 1 DPD模拟
  • 2 结果与讨论
  • 3 结论
  • 参考文献