Side-by-side Chinese-English

基于LOLA系统的能量数据估算激光指向误差

韩越1 李松1 余诗哲1 张智宇1 周辉1

(1.武汉大学电子信息学院, 湖北武汉 430072)

【摘要】为了获取高精度的月面高程,需要对激光器的指向误差进行准确估计。月球轨道激光高度计(LOLA)在轨工作期间,由于月球昼夜温度相差较大,夜晚的激光指向相对白天存在很大偏移。首先建立光斑偏离接收视场中心时探测器接收能量的理论模型,并基于该模型分析光斑偏移量与相对接收能量的理论关系,进而提出一种基于光斑能量的激光指向误差的估算方法。随后,使用测绘轨道期间(12个月)LOLA经过Aestuum地区产生的能量数据,并将能量数据与估算方法相结合,估算出LOLA在月球夜晚时的激光指向误差在沿轨方向为140.62μrad,在垂轨方向为-413.17μrad,该结果与LOLA地球扫描实验和利用轨道交叉点处高程数据推导的结果基本一致。

【关键词】 遥感;月球轨道激光高度计;在轨标定;激光指向误差;能量数据;

【DOI】

【基金资助】 国家自然科学基金(41801261); 对地高分国家科技重大专项(11-Y20A12-9001-17/18,42-Y20A119001-17/18); 装备预研航天科技联合基金(6141B06110102);

Laser Pointing Error Estimation Based on Energy Data of LOLA System

HAN Yue1 LI Song1 YU Shizhe1 ZHANG Zhiyu1 ZHOU Hui1

(1.Electronic Information School, Wuhan University, Wuhan, Hubei Province, China 430072)

【Abstract】To obtain the lunar elevation with high accuracy, it is necessary to accurately estimate the pointing error of laser. During the on-orbit operation of the Lunar Orbital Laser Altimeter (LOLA), the laser pointing at night deviates from that during the daytime due to the large temperature difference between day and night. This study first establishes a theoretical model of the detector receiving energy when the spot deviates from the center of the receiving field of view. Then, it analyzes the theoretical relationship between the spot offset and relative received energy based on this model and puts forward an estimation method of laser pointing error based on spot energy. Subsequently, the energy data generated when LOLA passed through Aestuum region during the surveying orbit (12 months) is used and combined with the estimation method. Then, the laser pointing errors of LOLA at night in moon are estimated to be 140.62 μrad along the orbit and −413.17 μrad vertical to the orbit, which are consistent with the results derived from LOLA earth scanning experiment and orbital intersection altitude data.

【Keywords】 remote sensing; lunar orbital laser altimeter; on-orbit calibration; laser pointing error; energy data;

【DOI】

【Funds】 National Natural Science Foundation of China (41801261); National Science and Technology Major Project of China (11-Y20A12-9001-17/18, 42-Y20A119001-17/18); Joint Fund of Equipment Pre-research of China Aerospace Science and Technology Corporation (6141B06110102);

Download this article
    References

    [1] Smith D E, Zuber M T, Jackson G B, et al. The Lunar Orbiter Laser Altimeter investigation on the Lunar Reconnaissance Orbiter mission [J]. Space science reviews, 2010, 150: 209–241.

    [2] Vondrak R, Keller J, Chin G, et al. Lunar Reconnaissance Orbiter (LRO): observations for lunar exploration and science [J]. Space science reviews, 2010, 150: 7–22.

    [3] Di K C, Liu B, Liu Z Q, et al. Review and prospect of lunar mapping using remote sensing data [J]. Journal of Remote Sensing, 2016, 20 (5): 1 230–1 242 (in Chinese).

    [4] Mao D D, McGarry J F, Mazarico E, et al. The laser ranging experiment of the Lunar Reconnaissance Orbiter: five years of operations and data analysis [J]. Icarus, 2017, 283: 55–69.

    [5] Smith D E, Zuber M T, Neumann G A, et al. Summary of the results from the Lunar Orbiter Laser Altimeter after seven years in lunar orbit [J]. Icarus, 2017, 283: 70–91.

    [6] Qiao L, Ling Z C, Head J W, et al. Analyses of Lunar Orbiter Laser Altimeter 1, 064-nm albedo in permanently shadowed regions of polar crater flat floors:implications for surface water ice occurrence and future in situ exploration [J]. Earth and Space Science, 2019, 6 (3): 467–488.

    [7] Barker M K, Sun X, Mazarico E, et al. Lunar phase function at 1064 nm from Lunar Orbiter Laser Altimeter passive and active radiometry [J]. Icarus, 2016, 273: 96–113.

    [8] Yi H, Li S, Ma Y, et al. On-orbit calibration of satellite laser altimeters based on footprint detection [J]. Acta Physica Sinica, 2017, 66 (13): 134206 (in Chinese).

    [9] Rowlands D D, Pavlis D E, Lemoine F G, et al. The use of laser altimetry in the orbit and attitude determination of Mars Global Surveyor [J]. Geophysical Research Letters, 1999, 26 (9): 1 191–1 194.

    [10] Mazarico E, Barker M K, Neumann G A, et al. Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter [J]. Geophysical Research Letters, 2014, 41 (7): 2 282–2 288.

    [11] Barker M K, Sun X, Mao D, et al. In-flight characterization of the Lunar Orbiter Laser Altimeter instrument pointing and far-field pattern [J]. Applied Optics, 2018, 57 (27): 7 702–7 713.

    [12] Ramos-Izquierdo L, Scott V S, Connelly J, et al. Optical system design and integration of the Lunar Orbiter Laser Altimeter [J]. Applied Optics, 2009, 48 (16): 3 035–3 049.

    [13] Kim S, Lee I, Kwon Y. Simulation of a Geiger-mode imaging LADAR system for performance assessment [J]. Sensors, 2013, 13 (7): 8 461–8 489.

    [14] National aeronautics and space administration. Lunar orbital data set [DB/OL]. (2019-08-16)[2019-09-05]. https://ode.rsl.wustl.edu/moon/index Product Search.aspx.

    [15] Neumann G A, Smith D E, Scott S R, et al. Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter reduced data record and derived products software interface specification, version 2. 42 [Z]. USA: NASA, 2011.

    [16] Keller J W, Petro N E, Vondrak R R. The Lunar Reconnaissance Orbiter mission-six years of science and exploration at the moon [J]. Icarus, 2016, 273: 2–24.

    [17] Mazarico E, Neumann G A, Barker M K, et al. Orbit determination of the lunar reconnaissance orbiter:status after seven years [J]. Planetary and Space Science, 2018, 162: 2–19.

    [18] National aeronautics and space administration. RADR data set description[DB/OL]. (2019-08-16)[2019-09-05]. http://pds-geosciences.wustl.edu/lro/lro-l-lola-3-rdr-v1/lrolol_1xxx/catalog/radr_ds.cat.

This Article

ISSN:0253-2239

CN:31-1252/O4

Vol 40, No. 05, Pages 188-196

March 2020

Downloads:4

Share
Article Outline

Abstract

  • 1 Introduction
  • 2 Theoretical analysis
  • 3 Introduction to experimental area and data
  • 4 Estimation of laser pointing error
  • 5 Conclusion
  • References