基于视频的掌纹掌脉联合识别系统

王浩1 康文雄1 陈晓鹏1

(1.华南理工大学自动化科学与工程学院, 广东广州 510641)

【摘要】搭建了基于视频的掌纹掌脉联合识别系统。首先对掌纹掌脉采用新的注册和识别方式,用系统获取的手掌运动视频来代替传统采集方式所获取的静态图像,认证时手掌无需刻意停留,只需横扫而过,有效地增强了认证的亲和性。提出了将旋转视频和横扫视频进行融合注册的新策略,从而确保了注册特征的丰富性和完整性,增强了系统对不同认证姿态的稳健性。为了提升已注册用户的识别速度,提出一种级联融合策略来进行识别。构建了一个包含100个手掌、1200段带有运动模糊的掌纹掌脉视频数据库,并在数据库上进行了大量仿真,结果显示新系统在915ms的期望耗时内能够达到1.51%的等误率,验证了所构建新系统的有效性和实用性。

【关键词】 机器视觉; 生物特征认证; 掌纹识别; 掌脉识别; 级联融合;

【DOI】

【基金资助】 国家自然科学基金(61573151) 广东省自然科学基金(2016A030313468) 广东省科技计划(2017A010101026) 广州市科技计划(201510010088)

Download this article

    References

    [1]Song W,Kim T,Kim H C,et al.A finger-vein verification system using mean curvature[J].Pattern Recognition Letters,2011 32(11):1541-1547.

    [2]Li Q,Qiu Z D,Sun D M,et al.A novel biometric:Knuckleprint[J].Acta Automatica Sinica,2007,33(6):596-601.

    [3]Kang B J,Park K R.Multimodal biometric method based on vein and geometry of a single finger[J].IETComputer Vision,2010,4(3):209-217.

    [4]Kang B J,Kang B P,Yoo J H,et al.Multimodal biometric method that combines veins,prints,and shape of a finger[J].Optical Engineering,2011,50(2):029801.

    [5]Zhu L Q,Zhang S Y.Multimodal biometric identification system based on finger geometry,knuckle print and palm print[J].Pattern Recognition Letters,2010,31(12):1641-1649.

    [6]Kong A,Zhang D,Kamel M.A survey of palmprint recognition[J].Pattern Recognition,2009,42(7):1408-1418.

    [7]Jia W,Zhang B,Lu J,et al.Palmprint recognition based on complete direction representation[J].IEEETransactions on Image Processing,2017,26(9):4483-4498.

    [8]Fei L,Xu Y,Zhang D.Half-orientation extraction of palmprint features[J].Pattern Recognition Letters,2016,69:35-41.

    [9]Paula A,Rajeswari E,Lakshmi S S,et al.Robust palm vein pattern recognition system based on hybrid texture descriptors[J].Biometrics and Bioinformatics,2016,8:186-189.

    [10]Wang L,Leedham G,Cho S Y.Minutiae feature analysis for infrared hand vein pattern biometrics[J].Pattern Recognition,2008,41(3):920-929.

    [11]Zhao S,Wang B,Tang C Y.Arm vein feature extraction and matching based on chain code[J].Acta Optica Sinica,2016,36(5):0515003.

    [12]Zhang D,Guo Z,Lu G,et al.Online joint palmprint and palmvein verification[J].Expert Systems with Applications,2011,38(3):2621-2631.

    [13]Kumar A,Zhang D.Personal recognition using hand shape and texture[J].IEEE Transactions on Image Processing,2006,15(8):2454-2461.

    [14]Qin W,Yin Y L,Liu L L.Video-based fingerprint verification[J].Sensors,2012,13(9):11660-11686.

    [15]Fang Y X,Kang W X,Wu Q X,et al.A novel videobased system for in-air signature verification[J].Computers&Electrical Engineering,2017,57:1-14.

    [16]Kang W X,Wu Q X.Contactless palm vein recognition using a mutual foreground-based local binary pattern[J].IEEE Transactions on Information Forensics and Security,2014,9(11):1974-1985.

    [17]Miura N,Nagasaka A,Miyatake T.Extraction of finger-vein patterns using maximum curvature points in image profiles[J].IEICE Transactions on Information and Systems,2007,E90D(8):1185-1194.

    [18]Ojala T,Pietikainen M,Maenpaa T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.

    [19]Kang W X,Chen X P.Fast representation based on a double orientation histogram for local image descriptors[J].IEEE Transactions on Image Processing,2015,24(10):2915-2927.

    [20]Lowe D G.Distinctive image features from scaleinvariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.

    [21]Yan X K,Kang W X,Deng F Q,et al.Palm vein recognition based on multi-sampling and feature-level fusion[J].Neurocomputing,2015,151(2):798-807.

This Article

ISSN:0253-2239

CN:31-1252/O4

Vol 38, No. 02, Pages 248-256

February 2018

Downloads:0

Share
Article Outline

摘要

  • 1 引言
  • 2 掌纹掌脉识别系统简介
  • 3 视频帧筛选
  • 4 掌部纹理模板提取及匹配
  • 5 掌纹局部不变特征提取及匹配
  • 6 决策层级联融合
  • 7 仿真结果分析
  • 8 结论
  • 参考文献