Side-by-side Chinese-English

影响Czerny-Turner结构像散校正的因素

董科研1 李欣航1,2,3 安岩1

(1.长春理工大学空间光电技术研究所, 吉林长春 130022)
(2.长春理工大学光电工程学院, 吉林长春 130022)
(3.Opto-electronics Engineer Institute,Changchun University of Science and Technology, Changchun ,China 130022)

【摘要】针对宽波段Czerny-Turner结构像散校正存在的问题,分析了影响光学系统像散校正的主要因素。基于发散光束照射平面光栅的像差理论,应用Matlab软件模拟分析了光学系统产生像散的原因和相应抑制方法的不足。讨论了了准直镜离轴角与聚焦镜离轴角的角度差值α和光学系统像散S之间关系,理论模拟了α取不同值时,宽波段C-T结构的全波段像散校正情况。为了验证理论分析的正确性,设计了光谱段为900~1 700nm的消像散型光学系统,利用光学设计软件Zemax对该波段的光学系统进行了光线追迹和设计优化,并对设计结果进行处理和分析。结果显示:随着角度差值的逐渐增大,短波波段像散校正能力越来越强,像散校正能力提高了1.6倍左右;长波波段像散束缚能力越来越弱,像散校正能力平均降低了1.27倍左右。得到的结果表明:角度差值的合理选取可以为宽波段Czerny-Turner结构的像散校正提供理论指导。

【关键词】 光学设计;Czerny-Turner结构;像散校正;边缘波段;

【DOI】

【基金资助】 长春市科技局科技支撑计划资助项目(No.14DR003); 校内青年科学基金资助项目(No.XQNJJ-2013-12); 吉林省教育厅“十三五”科学技术研究项目(吉教科合字[2016]第368号);

Influence factors of Czerny-Turner edge band astigmatism correction

DONG Ke-yan1 LI Xin-hang1,1,2 AN Yan1

(1.Institute of Space Photoelectric Technology, Changchun University of Science and Technology, Changchun, China 130022)
(2.Opto-electronics Engineer Institute,Changchun University of Science and Technology, Changchun ,China 130022)

【Abstract】To improve the weak correction capacity of a wide band Czerny-Turner structure, the influence factors on the astigmatism correction of an optical system were analyzed. The Matlab software was used to simulate and analyze the reasons that the astigmatism was produced and the traditional method could not suppress the astigmatism. Then, the dependence of the angle difference α between the off-axis angle of collimating mirror and the off-axis angle of focusing mirror on the astigmatism S of the optical system was discussed. The astigmatism correction of wide band Czerny-Turner structure was simulated at different α values. To verify the validity of the theoretical analysis, an astigmatic Czerny-Turner system ranging from 900 to 1 700 nm was designed, the Zemax was used to perform the ray tracing and optimal design and the design results were processed and analyzed. The simulation results demonstrate that the short-wave band astigmatism correction ability is getting stronger with increasing the angle difference, which may achieve about 1. 6 times on increase. However, long-wave band astigmatism correction ability is weaker and weaker, which may reduce about 1.27 times on average. It suggests that the reasonable selection of the angle difference can provide the theoretical guidance for correcting the astigmatism of wide band Czerny-Turner structures.

【Keywords】 optical design; Czerny-Turner structure; astigmatism correction; edge band;

【DOI】

【Funds】 Science & Technology Pillar Program of Changchun Science and Technology Bureau (14DR003); Young Scientists Fund of Changchun University of Science and Technology (XQNJJ-2013-12); “13th Five Year” Science and Technology Research Project of the Education Department of Jilin Province;

Download this article
    References

    [1]CHEN W, ZHENG Y Q, XUE Q SH. Airborne imaging spectrometer with wide field of view and large relative-aperture[J]. Opt. Precision Eng., 2015, 23(1): 15-21. (in Chinese)

    [2]ZHANG J, WANG SH R, HUANG Y, et al. Status and development of limb imaging spectrometer[J]. Chinese Optics, 2013, 6(5): 692-700. (in Chinese)

    [3]CUI J CH, TANG Y G, HAN P P, et al. Development of diagnostic imaging spectrometer for tumor on-line operation[J]. Opt. Precision Eng., 2013, 21(12): 3043-3049. (in Chinese)

    [4]CAO H X, WU N, FENG SH L, et al. Crossspectral calibration for monochromator and imaging spectrometer[J]. Opt. Precision Eng., 2014, 22(10): 2586-2591. (in Chinese)

    [5]MASAYUKI F, TAKEHIKO TAKENOUCHI, KEI-ICHI K. Highly efficient and aberration-corrected spectrometer for advanced Raman spectroscope[J]. Applied Optics, 2002, 41(22): 4655-4665.

    [6]XU L, CHEN K X, HE Q SH, et al. Design of freeform mirrors in Czerny-Turner spectrometers to suppress astigmatism[J]. Applied Optics, 2009, 48(15): 2871-2879.

    [7]SUNG K, THOMPSON K P, ROLLAND J. Broadband antigmatism-corrected Czerny-Turner spectrometer[J]. Optics Experess, 2010, 18(22): 23378-23384.

    [8]QU B X, GUO X, YU F H. Optimization of free-form cylindrical lens in Czerny-Turner spectrometer system to correct the astigmastism by using user defined error function[J]. SPIE, 2012, 8416: 84161I.

    [9]XUE Q SH. Astigmastism-corrected Czerny-Turner imaging spectrometer for broadband spectral simultaneity[J]. Applied Optics, 2011, 50(10): 1338-1344.

    [10]TANG Y, ZHANG ZH G, CHEN Y A, et al. Designed of visible-ultraviolet cylinder mirror imaging spectrometer[J]. Acta Optica Sinica, 2013, 33 (3): 0330004. (in Chinese)

    [11]AUSTIN D R, WITTING T, WALMSLEY I A. Broadband astigmatism-free Czerny-Turner imaging spectrometer using spherical mirrors[J]. Applied Optics, 2009, 48(19): 3846-3853.

    [12]BATE B, DOWELL M, NEWTON A C. Correction of astigmatism in a Czerny-Turner spectrograph using aplane grating in divergent illumination[J]. J. Phys., 1970, E3(3): 206-210.

This Article

ISSN:1004-924X

CN: 22-1198/TH

Vol 24, No. 10, Pages 2384-2391

October 2016

Downloads:0

Share
Article Outline

Abstract

  • 1 Introduction
  • 2 Astigmatism theory
  • 3 Astigmatism correction analysis
  • 4 Experiments and result analysis
  • 5 Conclusions
  • References