Side-by-side Chinese-English

炭团木霉Trichoderma hypoxylon中一个新倍半萜

吴洪波1,2 陈林2,3 吕海宁2 刘欢2 汪世华1 尹文兵2

(1.福建农林大学生命科学学院, 福建福州 350002)
(2.中国科学院微生物研究所真菌学国家重点实验室, 北京 100101)
(3.黄河科技学院郑州市药用资源研究重点实验室, 河南郑州 450063)

【摘要】木霉属Trichoderma真菌能够产生大量的活性次级代谢产物, 是农业和工业应用的重要资源库。通过对1株炭团木霉Trichoderma hypoxylon的化学研究, 从其大米发酵物中分离到6个化合物, 通过核磁共振、质谱、紫外和红外等光谱手段鉴定其结构分别为:tichodermacid (1) 、3-吲哚乙酸甲酯 (2) 、3-吲哚乙酸 (3) 、1-乙酰基-β-咔啉 (4) 、monaspilosin (5) 和hydroheptelidic acid (6) 。其中化合物1为新倍半萜。

【关键词】 炭团木霉;次级代谢产物;倍半萜;

【DOI】

A new sesquiterpenoid from Trichoderma hypoxylon

WU Hong-Bo1,2 CHEN Lin2,3 LV Hai-Ning2 LIU Huan2 WANG Shi-Hua1 YIN Wen-Bing2

(1.College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China 350002)
(2.State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China 100101)
(3.Huanghe Science and Technology College, Zhengzhou Key Laboratory of Medicinal Resources Research, Zhengzhou, Henan, China 450063)

【Abstract】Fungi of Trichoderma genus produce plenty of bioactive secondary metabolites and are very important sources for industrial and agricultural applications. Here, we conducted the chemical study of Trichoderma hypoxylon, and isolated six compounds from the rice fermentation. Their structures were elucidated by NMR, mass spectrometry, ultraviolet and infrared spectroscopy, and identified as trichodermacid (1), 3-indole-methylethanoate (2), 3-indole-acetic acid (3), 1-acetyl-β-carboline (4), monaspilosin (5), and hydroheptelidic acid (6). Compound 1 was found to be a new sesquiterpenoid.

【Keywords】 Trichoderma hypoxylon; secondary metabolites; sesquiterpenoid;

【DOI】

Download this article
    References

    Bocchi M, Garlaschelli L, Vidari G, Mellerio G, 1992. New farnesane sesquiterpenes from Hebeloma senescens. Journal of Natural Products, 55 (4): 428–431

    Chen Y, Fan CL, Wang Y, Zhang XQ, Huang XJ, Ye WC, 2018. Studies on chemical constituents of radix isatidis. Chinese Journal of Chinese Materia Medica, 43 (10): 2091–2096 (in Chinese)

    Cheng MJ, Wu MD, Chen IS, Yuan GF, 2008. Secondary metabolites from the mycelia of the fungus Monascus pilosus BCRC 38072. Chemical and Pharmaceutical Bulletin, 56 (3): 394–397

    Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J, 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology, 92 (4): 1–17

    Gamba-Invernizzi A, Garlaschelli L, Rossi A, Vidari G, Vita-Finzi P, 1993. New farnesane sesquiterpenes from Lactarius porninsis. Journal of Natural Products, 56 (11): 1948–1953

    Hashimoto T, Tori M, Mizuno Y, Asakawa Y, Fukazawa Y, 1989. The superoxide release inhibitors, cryptoporic acids C, D, and E; dimeric drimane sesquiterpenoid ethers of isocitric acid from the fungus Cryptoporus volvatus. Journal of the Chemical Society, Chemical Communications, 1989 (4): 258

    Hermosa R, Rubio MB, Cardoza RE, Nicolás C, Monte E, Gutiérrez S, 2013. The contribution of Trichoderma to balancing the costs of plant growth and defense. International Microbiology, 16: 69–80

    Howell CR, Stipanovic R, Lumsden R, 1993. Antibiotic production by strains of Gliocladium virens and its relation to the biocontrol of cotton seedling diseases. Biocontrol Science and Technology, 3 (4): 435–441

    Lee DS, Eom SH, Jeong SY, Shin HJ, Je JY, Lee EW, Chung YH, Kim YM, Kang CK, Lee MS, 2013. Anti-methicillin-resistant Staphylococcus aureus (MRSA) substance from the marine bacterium Pseudomonas sp. UJ-6. Environmental Toxicology and Pharmacology, 35 (2013): 171–177

    Lee M, Cho JY, Lee YG, Lee HJ, Lim SI, Lee SY, Nam YD, Moon JH, 2016. Furan, phenolic, and heptelidic acid derivatives produced by Aspergillus oryzae. Food Science and Biotechnology, 25 (5): 1259–1264

    Liang H, Wu YL, Ji HY, Wang J, Chen J, Wu XL, 2014. A survey of sesquiterpene chemical constituents in fungi. Chinese Pharmacology Conference and Fourteenth Chinese Pharmacist’s Weekly Collection in 2014. 1121–1128 (in Chinese)

    Liu H, Wang G, Li W, Liu X, Li E, Yin WB, 2018. A highly efficient genetic system for the identification of a harzianum B biosynthetic gene cluster in Trichoderma hypoxylon. Microbiology, doi: 10. 1099/mic. 0. 000649

    Liu YH, Jee HJ, Zhang S, 2005. Indole alkaloids from a sponge Sarcotragus species. Biochemical Systematics and Ecology, 34 (2006): 453–456

    Matarese F, Sarrocco S, Gruber S, Seidl-Seiboth V, Vannacci G, 2012. Biocontrol of Fusarium head blight: interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology, 158: 98–106

    Molla AH, Fakhru’l-Razi A, Abd-Aziz S, Hanafi MM, Roychoudhury PK, Alam MZ, 2002. A potential resource for bioconversion of domestic wastewater sludge. Bioresource Technology, 85: 263–272

    Mukherjee PK, Horwitz BA, Kenerley CM, 2011. Secondary metabolism in Trichoderma—a genomic perspective. Microbiology, 158: 35–45

    Opatz T, Kolshorn H, Anke H, 2008. Sterelactones: new isolactarane type sesquiterpenoids with antifungal activity from Stereum sp. IBWF 01060. The Journal of Antibiotics, 61 (9): 563–567

    Paul C, Konig WA, Wu CL, 2001. Sesquiterpenoid constituents of the liverworts Lepidozia fauriana and Lepidozia vitrea. Phytochemistry, 58 (5): 789–798

    Qin WT, Chen K, Zhuang WY, 2016. Five new records of Trichoderma from China and new distribution of two Trichoderma species in China. Mycosystema, 35 (8): 994–1007 (in Chinese)

    Reino JL, Guerrero RF, Hernandez-Galan R, Collado IG, 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7: 89–123

    Sun JZ, Pei YF, Li EW, Li W, Kevin DH, Yin WB, Liu XZ, 2016. A new species of Trichoderma hypoxylon harbours abundant secondary metabolites. Scientific Reports, 6: 37369

    Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL, 2009. Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. Journal of Natural Products, 72: 2032–2035

    Wang N, Liu T, Jin YZ, Xian HQ, 2018. Effects of Trichoderma on soil microbial diversity and strawberry growth and pathogenesis. Jiangsu Agricultural Sciences, 46 (18): 108–112 (in Chinese)

    Zhao AH, Wei JX, 1995. Advances in research on biological activity of sesquiterpenoids. Natural Product Research and Development, 7 (4): 65–69 (in Chinese)

    Zhu ZX, Zhuang WY, 2014. Current understanding of the genus Trichoderma (Hypocreales, Ascomycota). Mycosystema, 33 (6): 1136–1153 (in Chinese)

This Article

ISSN:1672-6472

CN: 11-5180/Q

Vol 38, No. 04, Pages 533-538

April 2019

Downloads:0

Share
Article Outline

Abstract

  • 1 Materials and methods
  • 2 Results and analyses
  • 3 Discussion
  • References