Side-by-side Chinese-English

等离子改性CNT/TiO2电极吸附去除水中苯酚的研究

施周1 杨文浩1 杨灵芳1 邓林1

(1.湖南大学水工程与科学系, 湖南长沙 410082)

【摘要】利用电感耦合空气等离子体对涂覆法制备的CNT/TiO2复合电极进行射频放电改性处理.复合电极的表面形貌、润湿性及元素成分分别通过扫描电镜(SEM)、接触角测试仪、x射线光电子能谱(XPS)进行了表征.结果表明,改性后有利于苯酚吸附,电极比表面孔隙、亲水性、TiO2及含氧官能团均得以增加;循环伏安测试(CV)表明改性后电极比电容提高54%;改性后复合电极对苯酚的吸附量较改性前提高了45%.且等离子改性CNT/TiO2电极对苯酚的去除量随电压、苯酚初始浓度的增加而增加,吸附过程符合准二级动力学方程,吸附等温线符合Langmuir等温吸附模型.

【关键词】 等离子活化;CNT/TiO_2复合电极;苯酚;电吸附;

【DOI】

【基金资助】 “十二五”国家科技支撑计划资助项目(2012BAJ24B03);

Electrosorption of phenol in aqueous solution using a plasma-activated CNT/TiO2 electrode

SHI Zhou1 YANG Wen-hao1 YANG Ling-fang1 DENG Lin1

(1.Department of Water Engineering and Science, Hunan University, Changsha, China 410082)

【Abstract】The CNT/TiO2 composite electrode prepared by coating method was activated with radio frequency inductively coupled air-plasma. The surface morphology, wetting ability and surface elements of the plasma activated electrode were characterized by scanning electron microscopy (SEM), contact angle and X-ray photoelectron spectroscopy (XPS), respectively. It was found that the pore ratio, hydrophilic property, contents of TiO2 and oxygen containing groups on the surface of the electrode increased after the activation, which facilitated the adsorption of phenol. Cyclic voltammetry (CV) result indicated that its specific capacity also increased by 54% with the plasma treatment. Further, phenol removal efficiency for the activated electrode was enhanced by 45% compared to that of the raw electrode, and the removal of phenol increased as the increase of applied voltage and initial concentration. The adsorption process followed the pseudo-second-order kinetic model and the equilibrium adsorption isotherm well fitted the Langmuir model.

【Keywords】 plasma-activation; CNT/TiO2 electrode; phenol; electrosorption;

【DOI】

【Funds】 "Twelve-Five" National Science and Technology Support Program (2012BAJ24B03);

Download this article
    References

    [1]Duan X Y, Liu W, Li X, et al. Kinetic and thermodynamic analysis of the removal of phenol by electrosorption on activated carbon fibers[J]. Acta Scientiae Circumstantiae, 2011, 31(3): 505-510 (in Chinese).

    [2]Wei W, Yu C, Zhao Q F, et al. Ordered mesoporous carbon-based titania as a reusable adsorbent-catalyst for removing phenol from water[J]. Chinese Journal of Catalysis, 2013, 34(6): 1 066-1 075.

    [3]Cui J G, Liu Y Q, Li N. Simultaneous degradation of phenol and Cr(Ⅵ) in the micro-polluted water by potassium ferrate [J]. China Environmental Science, 2011, 31(9): 1 461-1 465 (in Chinese).

    [4]Zhao Z Y, Jiang G Q, Jiang S Y, et al. Integrated anaerobic/aerobic biodegradation in an internal airlift loop reactor for phenol wastewater treatment[J]. Korean Journal of Chemical Engineering, 2009, 26(6): 1 662-1 667.

    [5]Wu W T, Nie C F, Tan F I, et al. The Preparation of Palygorskite Clay Modified Woodceramics from Wheat Straw and the Absorption of Them to the Phenol Wastewater[J]. Polymers & Polymer Composites, 2013, 21(9): 565-572.

    [6]Zou L D, Morri G, Qi D D. Using activated carbon electrode in electrosorptive deionisation of brackish water[J]. Desalination, 2008, 225(1): 329–340.

    [7]Park K K, Lee J B, Park P Y, et al. Development of a carbon sheet electrode for electrosorption desalination[J]. Desalination, 2007, 206(1): 86–91.

    [8]Li H B, Pan L K, Lu T, et al. A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization[J]. Journal of Electroanalytical Chemistry, 2011, 653(1): 40–44.

    [9]Sung I H, Yu D M, Yoon Y J, et al. Preparation and properties of sulfonated poly (arylene ether sulfone)/hydrophilic oligomer-gCNT composite membranes for PEMFC[J]. Macromolecular Research, 2013, 21(10): 1 138–1 144.

    [10]Jin Z X, Sun X, Xu G Q, et al. Nonlinear optical properties of some polymer/multi-walled canbon nanotobe composites[J]. Chemical Physics Letters, 2000, 318(6): 505-510.

    [11]Kim C, Lee J, Kim S, et al. TiO2 sol–gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization[J]. Desalination, 2014, 342(2): 70-74.

    [12]Chang L M, Duan X Y, Liu W. Preparation and electrosorption desalination performance of activated carbon electrode with titania[J]. Desalination, 2011, 270(1-3): 285-290.

    [13]Liu P I, Chung L C, Shao H, et al. Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization[J]. Electrochimica Acta, 2013, 96: 173-179.

    [14]Luo F. Modification of adsorption performance of carbon materials by nonthermal plasma[D]. Hangzhou: Zhejiang University, 2009 (in Chinese).

    [15]Liu Y. The high-frequency high-voltage low temperature plasmas discharge technology for material surface treatment[D]. Hangzhou: Zhejiang University, 2006 (in Chinese).

    [16]Yang L F, Shi Z, Yang W H. Characterization of air plasma-activated carbon nanotube electrodes for the removal of lead ion[J]. Water Science & Technology, 2014, 69(11): 2 272-2 278.

    [17]Wei F S. Monitoring and analysis methods for water and wastewater (4th Edition)[M]. Beijing: Chinese environmental science press, 2002: 460-462 (in Chinese).

    [18]Yang L F, Shi Z, Yang W H. Enhanced capacitive deionization of lead ions using air-plasma treated carbon nanotube electrode[J]. Surface and Coatings Technology, 2014, 251: 122-127.

    [19]Jiang X Y, Chen S D. Guide of infrared spectroscopy[M]. Tianjin: Tianjin Sci.and Technol. Press, 1992: 1-120.

    [20]Lang X Q, Ma H Q, Tan X, et al. Surface activation and graft of the ultrafine PTFE particles[J]. Acta Physico-Chimico Sinica, 2005, 21(7): 703-706.

    [21]Bezrodna T, Puchkovska G, Shymanovska V, et al. IR-analysis of H-bonded H2O on the pure TiO2 surface[J]. Journal of Molecular Structure, 2004, 700(1-3): 175-181.

This Article

ISSN:1000-6923

CN: 11-2201/X

Vol 35, No. 09, Pages 2664-2669

September 2015

Downloads:0

Share
Article Outline

Abstract

  • 1 Experiment
  • 2 Results and discussion
  • 3 Conclusions
  • References