非线性准则下三维加筋边坡稳定性的上限分析

侯超群1 邓欣1 孙志彬1 DIAS D1,2 许敬叔3

(1.合肥工业大学汽车与交通工程学院, 安徽合肥 230009)
(2.格勒诺布尔-阿尔卑斯大学3SR实验室, 伊泽尔格勒诺布尔38041)
(3.中南大学土木工程学院, 湖南长沙 410006)
【知识点链接】极限分析

【摘要】为了研究非线性摩尔-库仑破坏准则下的三维加筋边坡在均匀加筋和三角形加筋2种加筋模式下的稳定性,采用极限分析上限理论,构建加筋边坡破坏的三维破坏机构,推导不同加筋模式下的筋材内能耗散方程,并根据上限定理将三维加筋边坡的稳定性问题转化为显式优化问题,得到三维边坡稳定性指标的计算公式。采用MATLAB软件计算,将结果与已有研究成果进行比较,验证了所提出计算方法的正确性,并进一步讨论了非线性参数m、宽高比B/H、不同加筋模式以及不同加筋强度k0对三维边坡稳定性的影响。结果表明:稳定性系数Ns随着m的增加而非线性减小,在坡角较小(不大于60°)的情况下,m对边坡稳定性系数Ns的影响较大,边坡的非线性特性比较明显;稳定性系数Ns随着B/H的增加而减小,在B/H<5尤其B/H<2时,稳定性系数下降速率较快,B/H越接近10时稳定性系数逐渐趋于稳定;三角形加筋模式的加固效果优于均匀加筋模式,稳定系数性Ns随着加筋强度k0的增加而线性增大,但变化规律并不显著。在实际工程中,建议B/H较小时,要对加筋边坡进行三维分析以符合工程实际;坡角较小时需要考虑土体的非线性破坏特征,选取合适的非线性参数可避免不安全的设计;在工程条件允许的情况下,优先选择三角形加筋模式进行边坡加固。

【关键词】 道路工程; 三维稳定性分析; 极限分析; 三维边坡; 加筋边坡; 非线性破坏准则; 稳定性系数;

【DOI】

【基金资助】 国家重点基础研究发展计划(“九七三”计划)项目(2013CB036004) 国家自然科学基金项目(51408180) 中央高校基本科研业务费专项资金项目(JZ2014HGQC0138,J2014HGBZ0177)

Download this article

    References

    [1]MICHALOWSKI R L,DRESCHER A.Three-dimensional Stability of Slopes and Excavations[J].Geotechnique,2009,59(10):839-850.

    [2]PAN Q J,XU J S,DIAS D.Three-dimensional Stability of a Slope Subjected to Seepage Forces[J].International Journal of Geomechanics,2017,17(8):04017035.

    [3]WANG Zhao,QIAO Li-ping.Research of Critical Height of Reinforced Slopes[J].Rock and Soil Mechanics,2006,27(1):132-136.

    [4]CUI Xin-zhuang,YAO Zhan-yong,SHANG Qingsen,et al.Limit Analysis of Critical Heights of Reinforced Soil Slope[J].China Journal of Highway and Transport,2007,20(1):1-6.

    [5]ZHAO Lian-heng,LI Liang,YANG Feng,et al.Dynamic Stability Pseudo-static Analysis of Reinforcement Soil Slopes[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(9):1904-1917.

    [6]YANG Xin-guang,CHI Shi-chun,LU Xiao-long.Upper Bound Limit Analysis for Seismic Stability of Reinforced Slopes of Earth-rock Dams[J].Journal of Hydraulic Engineering,2014,45(3):304-311.

    [7]AUSILIO E.Seismic Bearing Capacity of Strip Footings Located Close to the Crest of Geosynthetic Reinforced Soil Structures[J].Geotechnical&Geological Engineering,2014,32(4):885-899.

    [8]GAO Y F,YANG S C,ZHANG F,et al.Threedimensional Reinforced Slopes:Evaluation of Required Reinforcement Strength and Embedment Length Using Limit Analysis[J].Geotextiles and Geomembranes,2016,44(2):133-142.

    [9]LADE P V.Elasto-plastic Stress-strain Theory for Cohesionless Soil with Curved Yield Surface[J].International Journal of Soilds&Structures,1977,13(11):1019-1035.

    [10]YANG Xiao-li.Limit Analysis Method and Its Application to Geotechnical Engineering with Linear and Nonlinear Failure Criteria[D].Changsha:Central South University,2002.

    [11]ZHANG X J,CHEN W F.Stability Analysis of Slopes with General Nonlinear Failure Criterion[J].International Journal for Numerical and Analytical Methods in Geomechanics,1987,11(1):33-50.

    [12]GAO Y F,WU D,ZHANG F.Effects of Nonlinear Failure Criterion on the Three-dimensional Stability Analysis of Uniform Slopes[J].Engineering Geology,2015,198:87-93.

    [13]PORBAHA A,GOODINGS D J.Centrifuge Modeling of Geotextile Reinforced Cohesive Soil Retaining Walls[J].Journal of Geotechnical Engineering,1996,122(10):840-848.

    [14]LI Xiu-juan.The Application of Upper-bound Method on Stability Analysis of Reinforcement[D].Qingdao:Ocean University of China,2008.

This Article

ISSN:1001-7372

CN: 61-1313/U

Vol 31, No. 02, Pages 124-132

February 2018

Downloads:0

Share
Article Outline

知识点

摘要

  • 0 引言
  • 1 非线性破坏准则
  • 2 破坏机构与筋材能耗
  • 3 机构的能耗计算
  • 4 对比计算与分析
  • 5 三维加筋边坡稳定性分析
  • 6 结语
  • 参考文献