Advances in terahertz three-dimensional imaging techniques

WANG Yu-ye1,2,3 CHEN Lin-yu1,2 XU De-gang1,2 SHI Jia1,2 FENG Hua3 YAO Jian-quan1,2

(1.Institute of Laser and Optoelectronics, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China 300072)
(2.Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin, China 300072)
(3.Institute of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing, China 400038)

【Abstract】Terahertz (THz) waves are characteristic for their low photon energy and fingerprint spectrum and ability to penetrate a large number of nonpolar materials. They have shown many unique advantages in areas such as nondestructive testing, security inspection, biological diagnosis and art identification. Three-dimensional THz tomographic imaging is especially useful for its ability to detect information inside samples. It is becoming a hot research topic and shows great promise for future development. In this paper, some typical THz three-dimensional imaging techniques are introduced, along with their basic principles and some potential research advancements. Some existing problems are described and some areas for future development trends are proposed.

【Keywords】 terahertz wave; three-dimensional imaging; computed tomography; optical coherence tomography; time of flight tomography;


【Funds】 National Key Basic Research Program of China (973 Program) (2015CB755403, 2014CB339802) National Key Research and Development Project (2016YFC0101001) National Natural Science Foundation of China (61775160, 61771332, 61471257) China Postdoctoral Science Foundation (2016M602954) Postdoctoral Science Foundation of Chongqing City (Xm2016021) Technology Innovation Program of Strengthening Hospital by Biomedicine of Chongqing Southwest Hospital (SWH2016LHJC04, SWH2016LHJC01)

Download this article

(Translated by CAI ZJ)


    [1] WANG Y Y, MINAMIDE H, TANG M, et al. Study of water concentration measurement in thin tissues with terahertz-wave parametric source [J]. Optics Express, 2010, 18 (15): 15504–15512.

    [2] WOODWARD R M, COLE B E, WALLACE V P, et al. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue [J]. Physics in Medicine and Biology, 2002, 47 (21): 3853–3863.

    [3] LIU H X, WANG Y Y, XU D G, et al. High-sensitivity attenuated total internal reflection continuous-wave terahertz imaging [J]. Journal of Physics D: Applied Physics, 2017, 50 (37): 375103.

    [4] LIU H X, YAO J Q, WANG Y Y, et al. Review of THz near-field imaging [J]. Journal of Infrared and Millimeter Waves, 2016, 35 (3): 300–309. (in Chinese)

    [5] DING L, DING Q, YE Y Y, et al. Overview of passive terahertz imaging systems for indoor concealed detection [J]. Chinese Optics, 2017, 10 (1): 114–121. (in Chinese)

    [6] LUUKANEN A, GRNBERG L, GRNHOLM M, et al. Real-time passive terahertz imaging system for standoff concealed weapons imaging [J]. Proceedings of SPIE, 2010, 7670: 767004.

    [7] WIETZKE S, J RDENS C, KRUMBHOLZ N, et al. Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints [J]. Journal of the European Optical Society, 2007, 2: 07013.

    [8] SHEN Y C, LO T, TADAY P F, et al. Detection and identification of explosives using terahertz pulsed spectroscopic imaging [J]. Applied Physics Letters, 2005, 86: 241116.

    [9] JACKSON J B, MOUROU M, WHITAKER J F, et al. Terahertz imaging for non-destructive evaluation of mural paintings [J]. Optics Communications, 2008, 281 (4): 527–532.

    [10] ADAM A J L, PLANKEN P C M, MELONI S, et al. Terahertz imaging of hidden paint layers on canvas [J]. Optics Express, 2009, 17 (5): 3407–3416.

    [11] LIU H B, ZHONG H, KARPOWICZ N, et al. Terahertz spectroscopy and imaging for defense and security applications [J]. Proceedings of the IEEE, 2007, 95 (8): 1514–1527.

    [12] SHEN Y C. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review [J]. International Journal of Pharmaceutics, 2011, 417 (1–2): 48–60.

    [13] JOSEPH C S, YAROSLAVSKY A N, NEEL V A, et al. Continuous wave terahertz transmission imaging of nonmelanoma skin cancers [J]. Lasers in Surgery&Medicine, 2011, 43 (6): 457–462.

    [14] JI Y B, OH S J, KANG S G, et al. Terahertz reflectometry imaging for low and high grade gliomas [J]. Scientific Reports, 2016, 6: 36040.

    [15] CHEN H, CHEN T H, TSENG T F, et al. High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model [J]. Optics Express, 2011, 19 (22): 21552–21562.

    [16] MITTLEMAN D M, HUNSCHE S, BOIVIN L, et al. T-ray tomography [J]. Optics Letters, 1997, 22 (12): 904–906.

    [17] LI Q, LI Y D, DING S H, et al. Terahertz computed tomography using a continuous-wave gas laser [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33 (5): 548–558.

    [18] JIAO Y Y. Study of the continuous-wave terahertz imaging technique[D]. Beijing: Capital Normal University, 2008. (in Chinese)

    [19] LI B, LI D Y, ZHOU X, et al. A continuous-wave terahertz 3-D computed tomography using a pyroelectric array detector [J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15 (1): 21–25. (in Chinese)

    [20] ZHENG D W. Experimental study of the continuous-wave terahertz tomography[D]. Chengdu: University of Electronic Science and Technology of China, 2011. (in Chinese)

    [21] ZUO ZH G. The study of terahertz coherent tomographe imaging and functional device[D]. Wuhan: Huazhong University of Science&Technology, 2013. (in Chinese)

    [22] FERGUSON B, WANG S, GRAY D, et al. T-ray computed tomography [J]. Optics Letters, 2002, 27 (15): 1312–1314.

    [23] TRIPATHI S R, SUGIYAMA Y, MURATE K, et al. Terahertz wave three-dimensional computed tomography based on injection-seeded terahertz wave parametric emitter and detector [J]. Optics Express, 2016, 24 (6): 6433–6440.

    [24] AHARON A (AKRAM), ROZBAN D, KLEIN A, et al. Detection and upconversion of three-dimensional MMW/THz images to the visible [J]. Photonics Research, 2016, 4 (6): 306–312.

    [25] YAN B, LI L. CT Image Reconstruction Algorithm [M]. Beijing: Science Press, 2014. (in Chinese)

    [26] BRAHM A, KUNZ M, RIEHEMANN S, et al. Volumetric spectral analysis of materials using terahertz-tomography techniques [J]. Applied Physics B, 2010, 100 (1): 151–158.

    [27] KATO E, NISHINA S, IRISAWA A, et al. 3D Spectroscopic computed tomography imaging using terahertz waves [C]. International Conference on Infrared, Millimeter, and Terahertz Waves. IEEE, 2010: 1–2.

    [28] IMAMURA M, NISHINA S, IRISAWA A, et al. 3D Imaging and analysis system using terahertz waves [C]. International Conference on Infrared Millimeter and Terahertz Waves, Rome, Italy: IRMMW-THz, 2010: 1–2.

    [29] YIN X X, NG B W H, FERGUSON B, et al. Wavelet transform and terahertz local tomography [J]. Proceedings of SPIE, 2007, 6631: 1–11.

    [30] YIN X X, NG B W H, ABBOTT D, et al. Local reconstruction for three dimensional terahertz imaging using a CW quantum cascade laser [C]. Proceedings of the 2008 International Conference on Image Processing, Computer Vision & Pattern Recognition, 2008: 252–258.

    [31] ABRAHAM E, OGHI Y, MINAMI M, et al. Real-time line projection for fast terahertz spectral computed tomography [J]. Optics letters, 2011, 36 (11): 2119–2121.

    [32] JEWARIYA M, ABRAHAM E, KITAGUCHI T, et al. Fast three-dimensional terahertz computed tomography using realtime line projection of intense terahertz pulse [J]. Optics Express, 2013, 21 (2): 2423–2433.

    [33] NGUYEN K L, JOHNS M L, GLADDEN L, et al. Three-dimensional imaging with a terahertz quantum cascade laser [J]. Optics Express, 2006, 14 (6): 2123–2129.

    [34] OTANI C, SUGA M, SASAHARA T, et al. THz phase-contrast computed tomography based on Mach-Zehnder interferometer using continuous wave source: proof of the concept [J]. Optics Express, 2013, 21 (21): 25389–25402.

    [35] KASHIWAGI T, NAKADE K, SAIWAI Y, et al. Computed tomography image using sub-terahertz waves generated from a high-Tc superconducting intrinsic Josephson junction oscillator [J]. Applied Physics Letters, 2014, 104 (8): 082603.

    [36] ZHOU T, ZHANG R, YAO C, et al. Terahertz three-dimensional imaging based on computed tomography with photonicsbased noise source [J]. Chinese Physics Letters, 2017, 34 (8): 76–78.

    [37] HILLGER P, SCHLUTER A, JAIN R, et al. Low-Cost 0. 5 THz computed tomography based on silicon components [C]. International Conference on Infrared, Millimeter, and Terahertz Waves, Cancun, Mexico: IRMMW-THz, 2017: 1–2.

    [38] ROTH D J, REYES-RODRIGUEZ S, ZIMDARS D A, et al. Terahertz computed tomography of NASA thermal protection system materials [C]. AIP Conference Proceedings, 2012, 1430: 566–572.

    [39] CAUMES J P, YOUNUS A, SALORT S, et al. Terahertz tomographic imaging of XVIIIth Dynasty Egyptian sealed pottery [J]. Applied Optics, 2011, 50 (20): 3604–3608.

    [40] BESSOU M, CHASSAGNE B, CAUMES J P, et al. Three-dimensional terahertz computed tomography of human bones [J]. Applied Optics, 2012, 51 (28): 6738–6744.

    [41] OZANYAN K B, WRIGHT P, STRINGER M R, et al. Hard-Field THz Tomography [J]. IEEE Sensors Journal, 2011, 11 (10): 2507–2513.

    [42] BITMAN A, GOLDRING S, MOSHE I, et al. Computed tomography using broadband Bessel THz beams and phase contrast [J]. Optics Letters, 2014, 39 (7): 1925–1928.

    [43] BRAHM A, WILMS A, TYMOSHCHUK M, et al. Optical effects at projection measurements for terahertz tomography [J]. Optics&Laser Technology, 2014, 62 (62): 49–57.

    [44] ABRAHAM E, YOUNUS A, AGUERRE C, et al. Refraction losses in terahertz computed tomography [J]. Optics Communications, 2010, 283 (10): 2050–2055.

    [45] RECUR B, YOUNUS A, SALORT S, et al. Investigation on reconstruction methods applied to 3D terahertz computed tomography [J]. Optics Express, 2011, 19 (6): 5105–5117.

    [46] RECUR B, GUILLET J P, BASSEL L, et al. Terahertz radiation for tomographic inspection [J]. Optical Engineering, 2012, 51 (9): 091609.

    [47] RECUR B, BALACEY H, SLEIMAN J B, et al. Ordered subsets convex algorithm for 3D terahertz transmission tomography [J]. Optics Express, 2014, 22 (19): 23299–23309.

    [48] BALACEY H, RECUR B, PERRAUD J B, et al. Advanced processing sequence for 3-D THz imaging [J]. IEEE Transactions on Terahertz Science&Technology, 2016, 6 (2): 191–198.

    [49] MUKHERJEE S, FEDERICI J. Study of structural defects inside natural cork by pulsed terahertz tomography [C]. International Conference on Infrared, Millimeter and Terahertz Waves, Houston, USA: IRMMW-THz, 2011: 1–2.

    [50] MUKHERJEE S, FEDERICI J, LOPES P, et al. Elimination of fresnel reflection boundary effects and beam steering in pulsed terahertz computed tomography [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34 (9): 539–555.

    [51] TEPE J, SCHUSTER T, LITTAU B. A modified algebraic reconstruction technique taking refraction into account with an application in terahertz tomography [J]. Inverse Problems in Science and Engineering, 2016, 25 (10): 1448–1478.

    [52] SUN W F, WANG X K, ZHANG Y. A method to monitor the oil pollution in water with reflective pulsed terahertz tomography [J]. Optik, 2012, 123 (21): 1980–1984.

    [53] SKRYL A S, JACKSON J B, BAKUNOV M I, et al. Terahertz time-domain imaging of hidden defects in wooden artworks: application to a Russian icon painting [J]. Applied Optics, 2014, 53 (6): 1033–1038.

    [54] ZHONG H, XU J Z, XIE X X, et al. Nondestructive defect identification with terahertz time-of-flight tomography [J]. IEEE Sensors Journal, 2005, 5 (2): 203–208.

    [55] ZEITLER J A, SHEN Y, BAKER C, et al. Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional terahertz pulsed imaging [J]. Journal of Pharmaceutical Sciences, 2007, 96 (2): 330–340.

    [56] JOHNSON J L, DORNEY T D, MITTLEMAN D M. Enhanced depth resolution in terahertz imaging using phase-shift interferometry [J]. Applied Physics Letters, 2001, 78 (6): 835–837.

    [57] TAKAYANAGI J, JINNO H, ICHINO S, et al. High-resolution time-of-flight terahertz tomography using a femtosecond fiber laser [J]. Optics Express, 2009, 17 (9): 7533–7539.

    [58] PARK H, SON J H, AHN C B. Enhancement of terahertz reflection tomographic imaging by interference cancellation between layers [J]. Optics Express, 2016, 24 (7): 7028–7036.

    [59] PEARCE J, CHOI H, MITTLEMAN D M, et al. T-ray reflection computed tomography [C]. Conference on Lasers and E-lectro-Optics, 2006, 3: 2120–2122.

    [60] YASUDA T, YASUI T, ARAKI T, et al. Real-time two-dimensional terahertz tomography of moving objects [J]. Optics Communications, 2006, 267 (1): 128–136.

    [61] JIN K H, KIM Y G, CHO S H, et al. High-speed terahertz reflection three-dimensional imaging for nondestructive evaluation [J]. Optics Express, 2012, 20 (23): 25432–25440.

    [62] YEE D S, JIN K H, YAHNG J S, et al. High-speed terahertz reflection three-dimensional imaging using beam steering [J]. Optics Express, 2015, 23 (4): 5027–5034.

    [63] CHO S H, LEE S H, NAMGUNG C, et al. Fast terahertz reflection tomography using block-based compressed sensing [J]. Optics Express, 2011, 19 (17): 16401–16409.

    [64] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography [J]. Science, 1991, 254 (5035): 1178–1181.

    [65] HUANG Y X, YAO J Q, LING F R, et al. Terahertz imaging technology based on coherent tomography [J]. Laser and Infrared, 2015, 45 (10): 1261–1265. (in Chinese)

    [66] ISOGAWA T, KUMASHIRO T, SONG H J, et al. Tomographic imaging using photonically generated low-coherence Terahertz noise sources [J]. IEEE Transactions on Terahertz Science&Technology, 2012, 2 (5): 485–492.

    [67] WU T, DING ZH H. Development of 20 Hz swept source optical coherence tomography system [J]. Chinese Journal of Lasers, 2009, 36 (2): 503–508. (in Chinese)

    [68] WU T. Development of swept source optical coherence tomography[D]. Hangzhou: Zhejiang University, 2011. (in Chinese)

    [69] IKEOU T, ISOGAWA T, AJITO K, et al. Terahertz imaging using swept source optical-coherence-tomography techniques [C]. International Topical Meeting on Microwave Photonics. IEEE, 2013: 290–293.

    [70] NAGATSUMA T, NISHII H, IKEO T. Terahertz imaging based on optical coherence tomography[Invited] [J]. Photonics Research, 2014, 2 (4): B64-B69.

    [71] YAHNG J S, PARK C S, LEE H D, et al. High-speed frequency-domain terahertz coherence tomography [J]. Optics Express, 2016, 24 (2): 1053–1061.

    [72] QUAST H, LOFFLER T. 3D-terahertz-tomography for material inspection and security [C]. International Conference on Infrared, Millimeter, and Terahertz Waves, Busan, Korea: IRMMW-THz, 2009: 1–2.

    [73] WEG C A, SPIEGEL W V, HENNEBERGER R, et al. Fast active THz cameras with ranging capabilities [J]. Journal of Infrared Millimeter&Terahertz Waves, 2009, 30 (12): 1281–1296.

    [74] KAPILEVICH B, PINHASI Y, ARUSI R, et al. 330 GHz FMCW image sensor for homeland security applications [J]. Journal of Infrared Millimeter&Terahertz Waves, 2010, 31 (11): 1370–1381.

    [75] KAK A C, SLANEY M WANG G. Principles of computerized tomographic imaging [J]. Medical Physics, 2002, 29 (1): 106–108.

    [76] GUILLET J P, RECUR B, FREDERIQUE L, et al. Review of terahertz tomography techniques [J]. Journal of Infrared, Millimeter & Terahertz Waves, 2014, 35 (4): 382–411.

    [77] SUNAGUCHI N, SASAKI Y, MAIKUSA N, et al. Depth-resolving THz imaging with tomosynthesis [J]. Optics Express, 2009, 17 (12): 9558–9570.

    [78] WANG S, ZHANG X C. Pulsed terahertz tomography [J]. Journal of Physics D: Applied Physics, 2004, 37 (4): R1–R36.

    [79] WANG S, ZHANG X C. Tomographic imaging with a terahertz binary lens [J]. Applied Physics Letters, 2003, 82 (12): 1821–1823.

    [80] SHI J, WANG X K, ZHENG X H, et al. Recent advances in terahertz digital holography [J]. Chinese Optics, 2017, 10 (1): 131–147. (in Chinese)

    [81] HEREMANS R, VANDEWAL M, ACHEROY M. Space-time versus frequency domain signal processing for 3D THz imaging [J]. Sensors IEEE, 2010: 739–744.

    [82] ZHANG ZH Y. Study the synthetic aperture radar 3D imaging technique [D]. Nanjing: Nanjing University of Science and Technology, 2009. (in Chinese)

This Article


CN: 22-1400/O4

Vol 12, No. 01, Pages 1-18

February 2019


Article Outline



  • 1 Introduction
  • 2 THz CT
  • 3 Reflection-type THz tomography
  • 4 Other THz 3D imaging technologies
  • 5 Conclusions
  • References