Side-by-side Chinese-English


檀满林1 张礼杰1,2,3 王晓伟1 马清1 符冬菊1 张维丽1 李冬霜1 陈建军1 张化宇4

(1.深圳清华大学研究院, 深圳 518057)
(2.哈尔滨工业大学深圳研究生院, 深圳 518057)
(3.Harbin Institute of Technology Shenzhen Graduate School, Shenzhen , China 518055)
(4.哈尔滨工业大学深圳研究生院, 深圳 518055)
【知识点链接】激光器; 掺杂; 分光光度计; 波数

【摘要】利用TFCcal设计软件构建膜系结构,采用溶胶–凝胶工艺和提拉法在超白玻璃上制备出厚度精确可控的宽光谱、高增透型SiO_2/TiO_2/SiO_2-TiO_2减反膜,同时结合甲基三乙氧基硅烷(MTES)改性碱催化的SiO_2溶胶,通过提拉法一次制备出高透过率疏水型薄膜。研究表明,高增透型三层宽光谱减反膜的理论膜层厚度依次为:80.9 nm(内层SiO_2-TiO_2)、125.0 nm(中间层TiO_2)、95.5 nm(外层SiO_2),其在400~700 nm可见光范围内平均透过率实际可高达97.03%以上。多层膜经过退火处理后,膜面的水接触角高达131.5°,同时陈化两个月以后的多层膜透过率仅下降0.143%,表明制备的SiO_2/TiO_2/SiO_2-TiO_2多层减反膜具有优良的疏水和耐环境性能。

【关键词】 增透膜;疏水型;耐环境;宽光谱;


【基金资助】 深圳市科技计划项目(CXZZ20150323160924557); 广东省科技计划项目(2014A010106004); 国家自然科学基金(51302150);

Hydrophobic and Environment-resistant Properties of SiO2/TiO2/SiO2-TiO2 Multilayer Antireflective Films in Wide Solar Spectra Range

TAN Man-Lin1 ZHANG Li-Jie1,2,3 WANG Xiao-Wei1 MA Qing1 FU Dong-Ju1 ZHANG Wei-Li1 LI Dong-Shuang1 CHEN Jian-Jun1 ZHANG Hua-Yu

(1.Research Institute of Tsinghua University in Shenzhen, Shenzhen, China 518057)
(2.Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China 518057)
(3.Harbin Institute of Technology Shenzhen Graduate School, Shenzhen , China 518055)
【Knowledge Link】lasers; doping; spectrophotometer; wave number

【Abstract】In the help of coatings optimization design using TFCcal program, wide spectrum antireflective SiO2/TiO2/SiO2-TiO2 multilayer films with thickness precisely controlled were prepared on low iron glass using sol gel process and Czochralski method. The thickness of above layers were separately set as 80.9 nm (SiO2-TiO2, inner layer), 125.0 nm (TiO2, inter-layer) and 95.5 nm (SiO2, outer layer) according to the results of calculation. A high-transmittance and highly hydrophobic film was prepared by Czochralski method combined with methyl triethoxysilane (MTES) SiO2 modified base-catalyzed sol. The average optical transmittance could reach 97.03% in the wavelength range of 400 – 700 nm. After annealing treatment, the surface water contact angles were almost around 131.5°. Furthermore, the optical transmittance only reduced 0.143% after aging for two months, showing that the prepared SiO2/TiO2/SiO2-TiO2 multilayer antireflective films had excellent hydrophobic and environment resistant properties.

【Keywords】 antireflective films; hydrophobic; environment resistant; wide spectrum;


【Funds】 Science and Technology Planning Project of Shenzhen City, China (CXZZ20150323160924557); Science and Technology Planning Project of Guangdong Province, China (2014A010106004); National Natural Science Foundation of China (51302150);

Download this article

    [1]DEUBENER J, HELSCH G, MOISEEV A, et al. Glasses for solar energy conversion systems. J. Eur. Ceram. Soc. 2009, 29: 1203–1210.

    [2]YE H P, ZHANG X X, ZHANG Y L, et al. Preparation of antireflective coatings with high transmittance and enhanced abrasion-resistance by a base/acid two-step catalyzed Sol-Gel process. Solar Energy Mater. Solar Cells, 2011, 95(8): 2347–2351.

    [3]VICENTE G S, BAYON R, GERMAN N, et al. Long-term durability of Sol-Gel porous coatings for solar glass covers. Thin Solid Films, 2009, 517(10): 3157–3160.

    [4]HELSCH G, MÖS A, DEUBENER J, et al. Thermal resistance of nanoporous antireflective coatings on silica glass for solar tower receivers. Solar Energy Mater. Solar Cells, 2010, 94(12): 2191–2196.

    [5]PRADO R, BEOBIDE G, MARCAIDE A, et al. Development of multifunctional Sol-Gel coatings: anti-reflection coatings with enhanced self-cleaning capacity. Solar Energy Mater. Solar Cells, 2010, 94(6): 1081–1088.

    [6]WANG JIAN-WU, BAI YU-CHEN, YAO WEI, et al. Preparation and investigation of SiO2/TiO2 antireflective coatings with self-cleaning and scratch-resistant properties. Journal of Inorganic Materials, 2011, 26(7): 769–773.

    [7]YAN L H, CHI F T, JIANG X B, et al. Preparation of hydro-oleophobic silica antireflective coating. Journal of Inorganic Materials, 2007, 22(6): 1247–1250.

    [8]LI X, SHEN J. A Scratch-resistant and hydrophobic broadband antireflective coating by Sol-Gel method. Thin Solid Films, 2011, 519(19): 6236–6240.

    [9]XIAO B, ZHANG Y L, ZHANG X X, et al. Focus on moisture-resistance and hydrophobicity of SiO2 antireflective film improved by poly(isopropylene oxide)glycerolether. J. Sol-Gel Sci. Technol. , 2011, 60(1): 11–16.

    [10]LEI M A, LI F S, SAKAE T, et al. Cost-effective nanoporous SiO2-TiO2 coatings on glass substrates with antireflective and self-cleaning properties. Appl. Energy, 2013, 112: 1198–1205.

    [11]YE L, ZHANG Y, ZHANG X, et al. Sol-Gel preparation of SiO2/TiO2/SiO2-TiO2 broadband antireflective coating for solar cell cover glass. Solar Energy Materials and Solar Cells, 2013, 111: 160–164.

    [12]TANG J F, GU P F, LIU X, et al. Modern optical thin film technology. Hangzhou: Zhejiang University Press, 2006(in Chinese).

    [13]NOSTELL P, ROOSA A, KARLSSON B. Optical and mechanical properties of Sol-Gel antireflective films for solar energy applications. Thin Solid Films. 1999, 351: 170–175.

    [14]CHANG Y C, MEI G H, CHANG T W, et al. Design and fabrication of a nanostructured surface combining antireflective and enhanced-hydrophobic effects. Nanotechnology, 2007, 18(28): 285 303.

    [15]BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202(1): 1–8.

    [16]ZHANG X X, CAO C R, XIAO B, et al. Preparation and characterization of polyvinyl butyral/silica hybrid antire flective coating: effect of PVB on moisture-resistance and hydrophobicitye. Sol-Gel Sci. Technol, 2010, 53(1): 79–84.

    [17]WADA M, KAMIYA K, NASU H. X-ray diffraction analysis of SiO2 gel prepared from monomethyl-tri-ethoxysilane by the Sol-Gel method. Phys. Chem. Glasses, 2002, 33(2): 56–60.

This Article


CN: 31-1363/TQ

Vol 31, No. 04, Pages 365-371

April 2016


Article Outline



  • 1 Design of film system
  • 2 Experimental method
  • 3 Results and discussion
  • 4 Conclusions
  • References