消除水分因素影响的野外原状土壤盐分高光谱建模估测
(2.山东菏泽水利工程总公司, 菏泽 274000)
(3.山东颐通土地房地产评估测绘有限公司, 济南 250000)
【摘要】土壤水分被确定为土壤属性 (有机碳、盐分等) 光谱预测准确性下降的一个主要原因, 该文通过两种方法的对比旨在探索去除土壤水分影响、提高盐分高光谱定量估测精度的方法和技术路线。首先以山东省东营市垦利区为研究区, 采用地物光谱仪测定了96个样本的野外原状土和室内风干土光谱, 并进行一阶导数变换;接着, 对比分析盐分光谱特征及水分的影响;然后分别采用外部参数正交化 (external parameter orthogonalization, EPO) 和非负矩阵分解 (non-negative matrix factorizing, NMF) 方法校正和融合野外原状土光谱, 去除土壤水分因素的影响, 形成野外原状土光谱的校正和融合光谱;最后基于野外原状土光谱、校正和融合光谱, 分别采用多元逐步线性回归 (multiple step linear regression, MSLR) 和偏最小二乘回归 (partial least squares regression, PLSR) 构建土壤盐分含量的估测模型, 并进行验证和比较, 分析预测精度变化。结果显示:土壤水分对野外原状土光谱及盐分光谱特征影响较大, 需要研究去除;EPO和NMF均可提高土壤盐分野外原位光谱估测精度, 比较而言, NMF效果更为显著;EPO结合PLSR或NMF结合MSLR可作为去除水分影响的土壤盐分校准模型的技术路线。
【关键词】 土壤盐分; 土壤水分; 光谱分析; 外部参数正交化; 非负矩阵分解;
【DOI】
【基金资助】
-
References
[1]Shi Zhou, Guo Yan, Jin Xi, et al.Advabcement in study on proximal soil sensing[J].Acta Pedologica Sinica, 2011, 48 (6) :1274-1281. (in Chinese with English abstract)
[2]Ignacio Melendez-Pastor, Encarni I Hernández, Jose Navarro-Pedreño, et al.Mapping soil salinization of agricultural coastal areas in Southeast Spain[M/OL]//Dr.Boris Escalante (Ed.) , Remote Sensing-Applications, 2012:117-140.http://www.intechopen.com/books/-remotesensing-applications/mapping-soil-salinization-o f-agricultural-coastal-areas-in-southeast-spain
[3]Farifteh J, Van Der Meer F, Van Der Meijde M, et al.Spectral characteristics of salt-affected soils:A laboratory experiment[J].Geoderma, 2008, 145:196-206.
[4]Nawar S, Buddenbaum H, Hill J.Estimation of soil salinity using three quantitative methods based on visible and near-infrared reflectance spectroscopy:A case study from Egypt[J].Arabian Journal of Geosciences, 2015, 8 (7) :5127-5140.
[5]Dai Xijun, Peng Jie, Zhang Yanli, et al.Prediction on soil salt content based on spectral classification[J].Acta Pedologica Sinica, 2016, 53 (4) :909-918. (in Chinese with English abstract)
[6]Zhang Xianlong, Zhang Fei, Zhang Haiwei, et al.Optimization of soil salt inversion model based on spectral transformation from hyperspectral index[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) , 2018, 34 (1) :110-117. (in Chinese with English abstract)
[7]Iii J B R, Smith D B.The potential of mid-and near-infrared diffuse reflectance spectroscopy for determining major-and trace-element concentrations in soils from a geochemical survey of North America[J].Applied Geochemistry, 2009, 24 (8) :1472-1481.
[8]Bambangh K, Hedley C B, Hedley M J, et al.The use of diffuse reflectance spectroscopy for in situ carbon and nitrogen analysis of pastoral soils[J].Australian Journal of Soil Research, 2008, 46 (6) :623-635.
[9]Ji W, Rossel R A V, Shi Z.Accounting for the effects of water and the environment on proximally sensed vis-NIRsoil spectra and their calibrations[J].European Journal of Soil Science, 2015, 66 (3) :555-565.
[10]Minasny B, McBratney A B, Bellon-Maurel V, et al.Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon[J].Geoderma, 2011, 167/168:118-124
[11]Wang Q, Li P H, Chen X.Modeling salinity effects on soil reflectance under various moisture conditions and its inverse application:A laboratory experiment[J].Geoderma, 2012, 170:103-111.
[12]Nocita M, Stevens A, Noon C, et al.Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy[J].Geoderma, 2013, 199:37-42.
[13]Rienzi E A, Mijatovic B, Mueller T G, et al.Prediction of soil organic carbon under varying moisture levels using reflectance spectroscopy[J].Soil Science Society of America Journal, 2014, 78 (3) :958-967.
[14]Castaldi F, Palombo A, Pascucci S, et al.Reducing the influence of soil moisture on the estimation of clay from hyperspectral data:A case study using simulated PRISMAData[J].Remote Sensing, 2015, 7 (11) :15561-15582.
[15]Kanzari S, Hachicha M, Bouhlila R, et al.Characterization and modeling of water movement and salts transfer in a semi-arid region of Tunisia (Bou Hajla, Kairouan) -Salinization risk of soils and aquifers[J].Computers&Electronics in Agriculture, 2012, 86 (s4-6) :34-42.
[16]Liu Y, Pan X Z, Shi R J, et al.Predicting soil salt content over partially vegetated surfaces using non-negative matrix factorization[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 8 (11) :5305-5316.
[17]Ji W, Viscarra Rossel R A, Shi Z.Improved estimates of organic carbon using proximally sensed vis-nir spectra corrected by piecewise direct standardization[J].European Journal of Soil Science, 2015, 66 (4) :670-678.
[18]Ackerson J P, Dematte J A, Morgan C L.Predicting clay content on field-moist intact tropical soils using a dried, ground VisNIR library with external parameter orthogonalization[J].Geoderma, 2015, s259-260:196-204.
[19]Wijewardane N K, Ge Y, Morgan C L S.Moisture insensitive prediction of soil properties from reflectance spectra based on external parameter orthogonalization[J].Geoderma, 2016, 267:92-101.
[20]Roudier P, Hedley C B, Lobsey C R, et al.Evaluation of two methods to eliminate the effect of water from soil vis-NIRspectra for predictions of organic carbon[J].Geoderma, 2017, 296:98-107.
[21]Lee D D, Seung H S.Learning the parts of objects by non-Negative matrix factorization[J].Nature, 1999, 401 (6755) :788-791.
[22]Chen Hongyan, Zhao Gengxing, Chen Jingchun, et al.Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) , 2015, 31 (5) :107-114. (in Chinese with English abstract)
[23]Chen Bin, Zou Xianyong, Zhu Wenjing.Eliminating outlier samples in near-infrared model by method of PCA-Mahalanobis distance[J].Journal of Jiangsu University:Natural Science Edition, 2008, 29 (4) :277-279. (in Chinese with English abstract)
[24]Peng Jie, Wang Jiaqiang, Xiang Hongying, et al.Comparative study on hyperspectral inversion accuracy of soil salt content and electrical conductivity[J].Spectroscopy and Spectral Analysis, 2014, 34 (2) :510-514. (in Chinese with English abstract)
[25]Ge Y, Morgan C L, Ackerson J P.VisN IR spectra of dried ground soils predict properties of soils scanned moist and intact[J].Geoderma, 2014, 221:61-69.
[26]Huang Min, Zhu Qibing.Feature extraction of hyperspectral scattering image foe apple mealiness based on singular value decomposition[J].Spectroscopy and Spectral Analysis, 2011, 31 (3) :767-770. (in Chinese with English abstract)
[27]Chen Hongyan, Zhao Gengxing, Zhang Xiaohui, et al.Improving estimation precision of soil organic matter content by removing effect of soil moisture from hyperspectra[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) , 2014, 30 (8) :91-100. (in Chinese with English abstract)
[28]Maruyama R, Maeda K, Moroda H, et al.Detecting cells using non-negative matrix factorization on calcium Imaging data[J].Neural Netw, 2014, 55 (55c) :11.
[29]Galeano J, Jolivot R, Marzani F, et al.Unmixing of human skin optical reflectance maps by non-negative matrix factorization algorithm[J].Biomedical Signal Processing&Control, 2013, 8 (2) :169-175.
[30]Lin C J.On the convergence of multiplicative update algorithms for non-negative matrix factorization[J].IEEETransactions on Neural Networks, 2007, 18 (6) :1589-1596.
[31]Jiang Zhenlan, Yang Yusheng, Sha Jinming.Study on GWRmodel applied for hyperspectral prediction of soil chromium in Fuzhou City[J].Acta Ecologica Sinica, 2017, 37 (23) :8117-8127. (in Chinese with English abstract)
[32]Wang Jingzhe, Tashpolat·Tiyip, Ding Jianli, et al.Estimation of desert soil organic carbon content based on hyperspectral data preprocessing with fractional differential[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) , 2016, 32 (21) :161-169. (in Chinese with English abstract)
[33]Sakhaii P, Bermel W.Improving the sensitivity of conventional spin echospectra by preservation of initial signal-to-noise ratio[J].Journal of Magnetic Resonance, 2014, 242 (3) :220-223.
[34]Liu Ya, Pan Xianzhang, Wang Changkun, et al.Predicting soil salinity based on spectral system under wet soil condition[J].Spectroscopy and Spectral Analysis, 2013, 33 (10) :2771-2776. (in Chinese with English abstract)
[35]Li Y L, Liu Y, Wu S W, et al.Hyper-spectral estimation of wheat biomass after alleviating of soil effects on spectra by non-negative matrix factorization[J].European Journal of Agronomy, 2017, 84:58-66.
ISSN:1002-6819
CN: 11-2047/S
Vol 34, No. 12, Pages 119-125
June 2018
Downloads:0