基于声发射技术的钢桥面板疲劳损伤监测与评估

段兰1 王春生1 翟慕赛1 王世超1 司海鹏1

(1.长安大学公路学院, 陕西西安 710064)

【摘要】采用多种监测技术融合手段,对正交异性钢桥面板开展了疲劳损伤监测与评估,包括足尺正交异性钢桥面板节段模型疲劳试验与某公路斜拉桥正交异性钢桥面板运营阶段的疲劳损伤监测;在正交异性钢桥面板疲劳试验中,综合采用了美国物理声学(PAC)声发射(AE)传感器、智能锆钛酸铅压电漆(PZT)传感器和应变片进行了粘贴钢板冷加固前后的疲劳裂纹监测;对处于运营阶段的斜拉桥钢桥面板疲劳开裂区域,采用了粘贴角钢的冷加固方法进行加固,并对加固前后的桥梁结构开展了AE监测和应变监测以研究疲劳裂纹状态与检验冷加固方法的效果。疲劳试验与监测结果表明:PAC的AE传感器和智能PZT传感器能有效捕捉具有突发峰值与快速衰减特征的疲劳扩展信号,二者的协同应用实现了疲劳裂纹智能感知,PAC的AE传感器组能实时捕捉纵肋上的疲劳裂纹扩展长度和方向;粘贴钢板冷加固后,应力水平稳定在64.8 MPa,直到继续循环加载至512万次仍无疲劳裂纹扩展,验证了正交异性钢桥面板粘贴钢板疲劳冷加固措施的良好加固效果;在疲劳试验过程中,PAC的AE传感器和智能PZT传感器监测疲劳裂纹扩展结果一致性良好,与应变片相比可实时捕捉更丰富的疲劳裂纹动态信息。对运营阶段正交异性钢桥面板疲劳监测与评估结果表明:加固前AE监测结果峰值能量是加固后峰值能量的5倍,AE累积信号由加固前的密集分布改变为加固后的稀散分布,表明加固后的钢桥面板疲劳裂纹处于稳定状态;随着加载车辆行驶通过,冷加固后的疲劳裂纹尖端应力峰值降低40%至50%;对比加固前后的24 h疲劳应力连续监测结果,疲劳细节附近应变片的应变水平从加固前的78 MPa下降至加固后的48 MPa;AE信号峰值能量、AE累积信号和应力水平的监测结果均证明了冷加固技术对正交异性钢桥面板疲劳开裂加固的有效性。

【关键词】 桥梁工程; 钢桥; 正交异性钢桥面板; 声发射监测; 疲劳损伤; 冷维护;

【DOI】

【基金资助】 国家自然科学基金项目(51578073) 国家“万人计划”科技创新领军人才支持项目(W03020659) 中央高校基本科研业务费专项资金项目(300102219309)

Download this article

    References

    [1] TSAKOPOULOS P A, FISHER J W. Full-scale fatigue tests of steel orthotropic decks for the Williamsburg Bridge[J].Journal of Bridge Engineering, 2003, 8(5):323-333.

    [2] TSAKOPOULOS P A, FISHER J W. Full-scale fatigue tests of steel orthotropic deck panel for the Bronx-Whitestone Bridge rehabilitation[J]. Bridge Structures, 2005, 1(1):55-66.

    [3] MALJAARS J, DOOREN F V, KOLSTEIN H. Fatigue assessment for deck plates in orthotropic bridge decks[J].Steel Construction, 2012, 5(2):93-100.

    [4] WANG Chun-sheng, WANG Yu-zhu, DUAN Lan, et al.Fatigue performance evaluation and cold reinforcement for old steel bridges[J]. Structural Engineering International,2019, 29(4):563-569.

    [5] WANG Chun-sheng, ZHAI Mu-sai, DUAN Lan, et al.Fatigue service life evaluation of existing steel and concrete bridges[J]. Advanced Steel Construction, 2015, 11(3):305-321.

    [6] WANG Chun-sheng, WANG Qian, XU Yue. Fatigue evaluation of a strengthened steel truss bridge[J]. Structure Engineering International, 2013, 23(4):443-449.

    [7]WANG Chun-sheng, CHEN Ai-rong, CHEN Wei-zhen.Assessment of remaining fatigue life and service safety for old steel bridges based on fracture mechanics[J]. China Journal of Highway and Transport, 2006, 19(2):42-48.(in Chinese)

    [8] WANG Chun-sheng, HAO Long, FU Bing-ning. Fatigue reliability updating evaluation of existing steel bridges[J].Journal of Bridge Engineering, 2012, 17(6):955-965.

    [9]WANG Chun-sheng, CHEN Wei-zhen, CHEN Ai-rong.Damage safety assessment and maintenance management strategy of bridges[J]. Journal of Traffic and Transportation Engineering, 2002, 2(4):21-28.(in Chinese)

    [10] XU Jun, SUN Hua-huai, CAI Shun-yao. Effect of symmetrical broken wires damage on mechanical characteristics of stay cable[J]. Journal of Sound and Vibration, 2019, DOI:10.1016/j.jsv.2019.114920.

    [11] NAKAMURA S I, SUZUMURA K, TARUI T. Mechanical properties and remaining strength of corroded bridge wires[J]. Structural Engineering International, 2004, 14(1):50-54.

    [12] NAKAMURA S I, SUZUMURA K. Experimental study on fatigue strength of corroded bridge wires[J]. Journal of Bridge Engineering, 2013, 18(3):200-209.

    [13] BETTI R, WEST A C, VERMAAS G, et al. Corrosion and embrittlement in high-strength wires of suspension bridge cables[J]. Journal of Bridge Engineering, 2005, 10(2):151-162.

    [14] FISHER J W, BARSOM J M. Evaluation of cracking in the rib-to-deck welds of the Bronx-Whitestone Bridge[J].Journal of Bridge Engineering, 2016, 21(3), DOI:10.1061/(ASCE)BE.1943-5592.0000823.

    [15] WANG Chun-sheng, WANG Yu-zhu, CUI Bing, et al.Numerical simulation of distortion-induced fatigue crack growth using extended finite element method[J]. Structure and Infrastructure Engineering, 2020, 16(1):106-122.

    [16] WANG Chun-sheng, ZHAI Mu-sai, DUAN Lan, et al. Cold reinforcement and evaluation of steel bridges with fatigue cracks[J]. Journal of Bridge Engineering, 2018, 23(4):04018014-1-11.

    [17]SHEN Gong-tian, GENG Rong-sheng, LIU Shi-feng.Acoustic emission source location[J]. Nondestructive Testing, 2002, 24(3):114-117, 125.(in Chinese)

    [18]DING You-liang, DENG Yang, LI Ai-qun. Advances in researches on application of acoustic emission technique to health monitoring for bridge structures[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(3):341 -351.(in Chinese)

    [19] POLLOCK A A, SMITH B. Stress-wave-emission monitoring of a military bridge[J]. Non-Destructive Testing,1972, 5(6):348-353.

    [20] COLOMBO I S, MAIN I G, FORDE M C. Assessing damage of reinforced concrete beam using “b-value” analysis of acoustic emission signals[J]. Journal of Materials in Civil Engineering, 2003, 15(3):280-286.

    [21] YUYAMA S, YOKOYAMA K, NIITANI K, et al. Detection and evaluation of failures in high-strength tendon of prestressed concrete bridges by acoustic emission[J].Construction and Building Materials, 2007, 21(3):491-500.

    [22] YU Jian-guo, ZIEHL P, ZÁRATE B, et al. Prediction of fatigue crack growth in steel bridge components using acoustic emission[J]. Journal of Constructional Steel Research, 2011, 67(8):1254-1260.

    [23] ROBERTS T M, TALEBZADEH M. Acoustic emission monitoring of fatigue crack propagation[J]. Journal of Constructional Steel Research, 2003, 59(6):695-712.

    [24] ZHOU Chang-jiang, ZHANG Yun-feng. Particle filter based noise removal method for acoustic emission signals[J].Mechanical Systems and Signal Processing, 2012, 28:63-77.

    [25] YAPAR O, BASU P K, VOLGYESI P, et al. Structural health monitoring of bridges with piezoelectric AE sensors[J].Engineering Failure Analysis, 2015, 56:150-169.

    [26] NAIR A, CAI C S. Acoustic emission monitoring of bridges:review and case studies[J]. Engineering Structures, 2010,32(6):1704-1714.

    [27] ZHANG Yun-feng. In situ fatigue crack detection using piezoelectric paint sensor[J]. Journal of Intelligent Material Systems and Structures, 2006, 17(10):843-852.

    [28] LI Zhen, ZHANG Yue-feng, WANG Chun-sheng. A sensor-driven structural health prognosis procedure considering sensor degradation[J]. Structure and Infrastructure Engineering:Maintenance, Management,Life-Cycle Design and Performance, 2013, 9(8):764-776.

    [29] LI Xin. Electroelastic properties of piezoelectric paint for ultrasonic guided wave sensing and damage detection[D].Bethlehem:Lehigh University, 2009.

    [30] LI Zhen, ZHANG Yun-feng. Extreme value theory-based structural health prognosis method using reduced sensor data[J]. Structure and Infrastructure Engineering:Maintenance,Management, Life-Cycle Design and Performance, 2014,19(8):988-997.

    [31] SHI Z, JARZYNSKI J, BAIR S, et al. Characterization of acoustic emission signals from fatigue fracture[J].Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2000, 214(9):1141-1149.

This Article

ISSN:1671-1637

CN: 61-1369/U

Vol 20, No. 01, Pages 60-73

February 2020

Downloads:0

Share
Article Outline

摘要

  • 0 引言
  • 1 AE监测
  • 2 足尺钢桥面板模型的AE监测与评价
  • 3 现场AE监测与评估
  • 4 结语
  • 参考文献