Non-Interferometric Phase Retrieval and Quantitative Phase Microscopy Based on Transport of Intensity Equation: A Review

Zuo Chao1,2 Chen Qian2 Sun Jiasong1,2 Anand Asundi3

(1.Smart Computational Imaging Laboratory, School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China 210094)
(2.Jiangsu Provincial Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, Nanjing, Jiangsu, China 210094)
(3.School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798)

【Abstract】Phase retrieval and quantitative phase imaging are central subjects in optical measuring and imaging technologies. The most well-established method for obtaining quantitative phase is through interferometry. However, this class of methods relies heavily on the superposition of two beams with a high degree of coherence, and complex interferometric device, stringent requirement on the environmental stability, and associated laser speckle noise greatly limit its applications in the field of microscopic imaging. On a different note, as one of the typical phase retrieval approaches, the transport of intensity equation (TIE) provides a new non-interferometric way to access the quantitative phase information. In recent years, it has been extensively studied and remarkable advancements have been made in the fields of adaptive optics, X-ray diffraction imaging, electron microscopy, and optical microscopy. In this work, we will review the basic principles and some recent advances in TIE phase retrieval, including its solutions, axial intensity derivative estimation, partially coherent imaging and light field imaging, with emphasis on its applications in the field of quantitative phase microscopy. The challenging problems as well as future research directions will also be discussed.

【Keywords】 imaging systems; phase retrieval; transport of intensity equation; quantitative phase imaging; microscopy;

【Funds】 National Natural Science Foundation of China (11574152, 61505081) Project for Talents in Six Industries of Jiangsu Province (2015-DZXX-009) 333 Project in Jiangsu Province (BRA2015294) Open Fund of Jiangsu Provincial Key Laboratory of Spectral Imaging & Intelligent Sense (3092014012200417) Independent Research Fund of Nanjing University of Science and Technology (3092014012200417); Project for Outstanding Young Scholars in Nanjing University of Science and Technology

Download this article

(Translated by LIU Tao)

    References

    1 Giloh H, Sedat J W. Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate[J]. Science, 1982, 217(4566): 1252–1255.

    2 Wilson T. Confocal microscopy[M]. London: Academic Press, 1990: 1–64.

    3 Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 1942, 9(7): 686–698.

    4 Nomarski G. Differential microinterferometer with polarized waves[J]. Journal de Physique et le Radium, 1955, 16: 9s–13s.

    5 Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging[J]. Optics Letters, 1999, 24(5): 291–293.

    6 Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Applied Optics, 1999, 38(34): 6994–7001.

    7 Cuche E, Marquet P, Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography[J]. Applied Optics, 2000, 39(23): 4070–4075.

    8 Schnars U, Jüptner W P O. Digital recording and numerical reconstruction of holograms[J]. Measurement Science and Technology, 2002, 13(9): R85.

    9 Schnars U, Jueptner W. Digital holography[M]. Heidelberg: Springer Berlin Heidelberg, 2005.

    10 Hartmann J. Bemerkungen uber den bau und die justirung von spektrographen(in Germany)[J]. Z Instrumentenkd, 1900, 20: 47–58.

    11 Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5): S573–S577.

    12 Shack R V, Platt B C. Production and use of a lenticular Hartmann screen[J]. Journal of the Optical Society of America, 1971, 61: 656.

    13 Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35: 237.

    14 Gerchberg R W, Saxton W. Phase determination from image and diffraction plane pictures in electron-microscope[J]. Optik, 1971, 34(3): 275–283.

    15 Eisebitt S, Lüning J, Schlotter W, et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography[J]. Nature, 2004, 432(7019): 885–888.

    16 Marchesini S, He H, Chapman H N, et al. X-ray image reconstruction from a diffraction pattern alone[J]. Physical Review B, 2003, 68(14): 140101.

    17 Gonsalves R A, Chidlaw R. Wavefront sensing by phase retrieval[C]. Proceedings of the 23rd Annual Technical Symposium, International Society for Optics and Photonics, 1979: 32–39.

    18 Guyon O. Limits of adaptive optics for high-contrast imaging[J]. The Astrophysical Journal, 2005, 629(1): 592.

    19 Zuo J M, Vartanyants I, Gao M, et al. Atomic resolution imaging of a carbon nanotube from diffraction intensities[J]. Science, 2003, 300(5624): 1419–1421.

    20 Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]. Optics Letters, 2005, 30(8): 833–835.

    21 Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2): 023903.

    22 Fienup J, Wackerman C C. Phase-retrieval stagnation problems and solutions[J]. Journal of the Optical Society of America A, 1986, 3(11): 1897–1907.

    23 Lu G, Zhang Z, Francis T S, et al. Pendulum iterative algorithm for phase retrieval from modulus data[J]. Optical Engineering, 1994, 33(2): 548–555.

    24 Misell D. A method for the solution of the phase problem in electron microscopy[J]. Journal of Physics D, 1973, 6(1): L6.

    25 Zhang F, Pedrini G, Osten W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation[J]. Physical Review A, 2007, 75(4): 043805.

    26 Bao P, Zhang F, Pedrini G, et al. Phase retrieval using multiple illumination wavelengths[J]. Optics Letters, 2008, 33(4): 309–311.

    27 Anand A, Pedrini G, Osten W, et al. Wavefront sensing with random amplitude mask and phase retrieval[J]. Optics Letters, 2007, 32(11): 1584–1586.

    28 Fienup J R. Phase retrieval algorithms: A comparison[J]. Applied Optics, 1982, 21(15): 2758–2769.

    29 Waller L. Phase imaging with partially coherent light[C]. SPIE, 2013, 8589: 85890K.

    30 Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85(20): 4795–4797.

    31 Thibault P, Dierolf M, Menzel A, et al. High-resolution scanning X-ray diffraction microscopy[J]. Science, 2008, 321(5887): 379–382.

    32 Thibault P, Dierolf M, Bunk O, et al. Probe retrieval in ptychographic coherent diffractive imaging[J]. Ultramicroscopy, 2009, 109(4): 338–343.

    33 Guizar-Sicairos M, Fienup J R. Phase retrieval with transverse translation diversity: A nonlinear optimization approach[J]. Optics Express, 2008, 16(10): 7264–7278.

    34 Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256–1262.

    35 Maiden A M, Humphry M J, Sarahan M C, et al. An annealing algorithm to correct positioning errors in ptychography[J]. Ultramicroscopy, 2012, 120: 64–72.

    36 Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 2013, 494(7435): 68–71.

    37 Batey D J, Claus D, Rodenburg J M. Information multiplexing in ptychography[J]. Ultramicroscopy, 2014, 138: 13–21.

    38 Maiden A M, Humphry M J, Zhang F, et al. Superresolution imaging via ptychography[J]. Journal of the Optical Society of America A, 2011, 28(4): 604–612.

    39 Maiden A M, Humphry M J, Rodenburg J M. Ptychographic transmission microscopy in three dimensions using a multislice approach[J]. Journal of the Optical Society of America A, 2012, 29(8): 1606–1614.

    40 Zheng Chen, He Xiaoliang, Liu Cheng, et al. A study on the influence of the axial distance error to the image quality of the ptychographic iterative engine[J]. Acta Optica Sinica, 2014, 34(10): 1011003(in Chinese).

    41 Wang Baosheng, Gao Shumei, Wang Jicheng, et al. Influence of charge coupled device saturation on PIE imaging[J]. Acta Optica Sinica, 2013, 33(6): 0611001(in Chinese).

    42 Wang Yali, Shi Yishi, Li Tuo, et al. Research on the key parameters of illuminating beam for imaging via ptychography in visible light band[J]. Acta Physica Sinica, 2013, 62(6): 064206(in Chinese).

    43 Teague M R. Deterministic phase retrieval: A Green′s function solution[J]. Journal of the Optical Society of America, 1983, 73(11): 1434–1441.

    44 Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light[J]. Physical Review Letters, 1998, 80(12): 2586–2589.

    45 Frank J, Altmeyer S, Wernicke G. Non-interferometric, non-iterative phase retrieval by Green′s functions[J]. Journal of the Optical Society of America A, 2010, 27(10): 2244–2251.

    46 Semichaevsky A, Testorf M. Phase-space interpretation of deterministic phase retrieval[J]. Journal of the Optical Society of America A, 2004, 21(11): 2173–2179.

    47 Almoro P F, Waller L, Agour M, et al. Enhanced deterministic phase retrieval using apartially developed speckle field[J]. Optics Letters, 2012, 37(11): 2088–2090.

    48 Gureyev T E, Roberts A, Nugent K A. Partially coherent fields, the transport-of-intensity equation, and phase uniqueness[J]. Journal of the Optical Society of America A, 1995, 12(9): 1942–1946.

    49 Sheppard C J R. Defocused transfer function for a partially coherent microscope and application to phase retrieval[J]. Journal of the Optical Society of America A, 2004, 21(5): 828–831.

    50 Nugent K A, Gureyev T E, Cookson D F, et al. Quantitative phase imaging using hard X rays[J]. Physical Review Letters, 1996, 77(14): 2961–2964.

    51 Barty A, Nugent K A, Paganin D, et al. Quantitative optical phase microscopy[J]. Optics Letters, 1998, 23(11): 817–819.

    52 Kou S S, Waller L, Barbastathis G, et al. Transport-of-intensity approach to differential interference contrast(TI-DIC)microscopy for quantitative phase imaging[J]. Optics Letters, 2010, 35(3): 447–449.

    53 Waller L, Kou S S, Sheppard C J R, et al. Phase from chromatic aberrations[J]. Optics Express, 2010, 18(22): 22817–22825.

    54 Gorthi S S, Schonbrun E. Phase imaging flow cytometry using a focus-stack collecting microscope[J]. Optics Letters, 2012, 37(4): 707–709.

    55 Roddier F. Curvature sensing and compensation: A new concept in adaptive optics[J]. Applied Optics, 1988, 27(7): 1223–1225.

    56 Roddier F. Wavefront sensing and the irradiance transport equation[J]. Applied Optics, 1990, 29(10): 1402–1403.

    57 Han I W. New method for estimating wavefront from curvature signal by curve fitting[J]. Optical Engineering, 1995, 34(4): 1232–1237.

    58 Roddier F. Adaptive optics in astronomy[M]. Cambridge: Cambridge University Press, 1999.

    59 Roddier C, Roddier F. Wave-front reconstruction from defocused images and the testing of ground-based optical telescopes[J]. Journal of the Optical Society of America A, 1993, 10(11): 2277–2287.

    60 Bajt S, Barty A, Nugent K A, et al. Quantitative phase-sensitive imaging in a transmission electron microscope[J]. Ultramicroscopy, 2000, 83(1): 67–73.

    61 McMahon P J, Allman B E, Jacobson D L, et al. Quantitative phase radiography with polychromatic neutrons[J]. Physical Review Letters, 2003, 91(14): 145502.

    62 Gureyev T E, Nugent K A. Rapid quantitative phase imaging using the transport of intensity equation[J]. Optics Communications, 1997, 133(1): 339–346.

    63 Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation: Fast solution with use of discrete cosine transform[J]. Optics Express, 2014, 22(8): 9220–9244.

    64 Zysk A M, Schoonover R W, Carney P S, et al. Transport of intensity and spectrum for partially coherent fields[J]. Optics Letters, 2010, 35(13): 2239–2241.

    65 Petruccelli J C, Tian L, Barbastathis G. The transport of intensity equation for optical path length recovery using partially coherent illumination[J]. Optics Express, 2013, 21(12): 14430–14441.

    66 Waller L, Luo Y, Yang S Y, et al. Transport of intensity phase imaging in a volume holographic microscope[J]. Optics Letters, 2010, 35(17): 2961–2963.

    67 Barty A, Nugent K A, Roberts A, et al. Quantitative phase tomography[J]. Optics Communications, 2000, 175(4): 329–336.

    68 Tian L, Petruccelli J C, Miao Q, et al. Compressive X-ray phase tomography based on the transport of intensity equation[J]. Optics Letters, 2013, 38(17): 3418–3421.

    69 Xue B, Zheng S, Cui L, et al. Transport of intensity phase imaging from multiple intensities measured in unequallyspaced planes[J]. Optics Express, 2011, 19(21): 20244–20250.

    70 Bie R, Yuan X H, Zhao M, et al. Method for estimating the axial intensity derivative in the TIE with higher order intensity derivatives and noise suppression[J]. Optics Express, 2012, 20(7): 8186–8191.

    71 Tian L, Petruccelli J C, Barbastathis G. Nonlinear diffusion regularization for transport of intensity phase imaging[J]. Optics Letters, 2012, 37(19): 4131–4133.

    72 Zheng S, Xue B, Xue W, et al. Transport of intensity phase imaging from multiple noisy intensities measured in unequally-spaced planes[J]. Optics Express, 2012, 20(2): 972–985.

    73 Waller L, Tsang M, Ponda S, et al. Phase and amplitude imaging from noisy images by Kalman filtering[J]. Optics Express, 2011, 19(3): 2805–2815.

    74 Cheng Hong, Zhang Quanbing, Wei Sui, et al. Phase retrieval based on transport-of-intensity equation[J]. Acta Photonica Sinica, 2011, 40(10): 1566–1570(in Chinese).

    75 Cheng Hong, Shen Chuan, Zhang Cheng, et al. Phase retrieval algorithm combining transport of intensity equation and angular spectrum iterative[J]. Chinese J Lasers, 2014, 41(6): 0609001(in Chinese).

    76 Wang Xiao, Mao Heng, Zhao Dazun. Phase retrieval based on intensity transport equation[J]. Acta Optica Sinica, 2007, 27(12): 2117–2122(in Chinese).

    77 Xue Bindang, Zheng Shiling, Jiang Zhiguo. Phase retrieval using transport of intensity equation solved by full multigrid method[J]. Acta Optica Sinica, 2009, 29(6): 1514–1518(in Chinese).

    78 Liu Beibei, Yu Yingjie, Wu Xiaoyan, et al. Applicable conditions of phase retrieval based on transport of intensity equation[J]. Optics and Precision Engineering, 2015, 23(10z): 77–84(in Chinese).

    79 Zuo C, Chen Q, Li H, et al. Boundary-artifact-free phase retrieval with the transport of intensity equation II: Applications to microlens characterization[J]. Optics Express, 2014, 22(15): 18310–18324.

    80 Zuo C, Chen Q, Huang L, et al. Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation[J]. Optics Express, 2014, 22(14): 17172–17186.

    81 Zuo C, Chen Q, Yu Y, et al. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Optics Express, 2013, 21(5): 5346–5362.

    82 Zuo C, Chen Q, Asundi A. Light field moment imaging: Comment[J]. Optics Letters, 2014, 39(3): 654.

    83 Zuo C, Chen Q, Qu W, et al. Noninterferometric single-shot quantitative phase microscopy[J]. Optics Letters, 2013, 38(18): 3538–3541.

    84 Zuo C, Chen Q, Qu W, et al. High-speed transport-of-intensity phase microscopy with an electrically tunable lens[J]. Optics Express, 2013, 21(20): 24060–24075.

    85 Ichikawa K, Lohmann A W, Takeda M. Phase retrieval based on the irradiance transport equation and the Fourier transform method: Experiments[J]. Applied Optics, 1988, 27(16): 3433–3436.

    86 Gilbarg D A, Trudinger N S. Elliptic partial differential equations of second order[M]. New York: Springer, 2001.

    87 Bhamra K S. Partial differential equations: An introductory treatment with applications[M]. New Delhi: PHI, 2010.

    88 Woods S C, Greenaway A H. Wave-front sensing by use of a Green′s function solution to the intensity transport equation[J]. Journal of the Optical Society of America A, 2003, 20(3): 508–512.

    89 Roddier N A. Algorithms for wavefront reconstruction out of curvature sensing data[C]. SPIE, 1991, 1542: 120–129.

    90 Allen L J, Oxley M P. Phase retrieval from series of images obtained by defocus variation[J]. Optics Communications, 2001, 199(1-4): 65–75.

    91 Pinhasi S V, Alimi R, Perelmutter L, et al. Topography retrieval using different solutions of the transport intensity equation[J]. Journal of the Optical Society of America A, 2010, 27(10): 2285–2292.

    92 Gureyev T E, Raven C, Snigirev A, et al. Hard X-ray quantitative non-interferometric phase-contrast microscopy[J]. Journal of Physics D, 1999, 32(5): 563.

    93 Gureyev T, Roberts A, Nugent K. Phase retrieval with the transport-of-intensity equation: Matrix solution with use of Zernike polynomials[J]. Journal of the Optical Society of America A, 1995, 12(9): 1932–1942.

    94 Gureyev T E, Nugent K A. Phase retrieval with the transport-of-intensity equation. II: Orthogonal series solution for nonuniform illumination[J]. Journal of the Optical Society of America A, 1996, 13(8): 1670–1682.

    95 Volkov V V, Zhu Y, de Graef M. A new symmetrized solution for phase retrieval using the transport of intensity equation[J]. Micron, 2002, 33(5): 411–416.

    96 Martinez-Carranza J, Falaggis K, Kozacki T, et al. Effect of imposed boundary conditions on the accuracy of transport of intensity equation based solvers[C]. SPIE, 2013, 8789: 87890N.

    97 Huang L, Zuo C, Idir M, et al. Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms[J]. Optics Letters, 2015, 40(9): 1976–1979.

    98 Parvizi A, Müller J, Funken S A, et al. A practical way to resolve ambiguities in wavefront reconstructions by the transport of intensity equation[J]. Ultramicroscopy, 2015, 154: 1–6.

    99 Schmalz J A, Gureyev T E, Paganin D M, et al. Phase retrieval using radiation and matter-wave fields: Validity of Teague′s method for solution of the transport-of-intensity equation[J]. Physical Review A, 2011, 84(2): 023808.

    100 Shanker A, Sczyrba M, Connolly B, et al. Critical assessment of the transport of intensity equation as a phase recovery technique in optical lithography[C]. SPIE, 2014, 9052: 90521D.

    101 Beleggia M, Schofield M A, Volkov V V, et al. On the transport of intensity technique for phase retrieval[J]. Ultramicroscopy, 2004, 102(1): 37–49.

    102 Paganin D, Barty A, McMahon P J, et al. Quantitative phase-amplitude microscopy. III: The effects of noise[J]. Journal of Microscopy, 2004, 214(1): 51–61.

    103 Ishizuka K, Allman B. Phase measurement of atomic resolution image using transport of intensity equation[J]. Journal of Electron Microscopy, 2005, 54(3): 191–197.

    104 Roddier F. Curvature sensing: A diffraction theory[R]. NOAO Advanced Development Program, 1987.

    105 Soto M, Acosta E, Ríos S. Performance analysis of curvature sensors: Optimum positioning of the measurement planes[J]. Optics Express, 2003, 11(20): 2577–2588.

    106 Martin A V, Chen F R, Hsieh W K, et al. Spatial incoherence in phase retrieval based on focus variation[J]. Ultramicroscopy, 2006, 106(10): 914–924.

    107 Huang S, Xi F, Liu C, et al. Frequency analysis of a wavefront curvature sensor: Selection of propagation distance[J]. Journal of Modern Optics, 2012, 59(1): 35–41.

    108 Waller L, Tian L, Barbastathis G. Transport of intensity phase-amplitude imaging with higher order intensity derivatives[J]. Optics Express, 2010, 18(12): 12552–12561.

    109 Soto M, Acosta E. Improved phase imaging from intensity measurements in multiple planes[J]. Applied Optics, 2007, 46(33): 7978–7981.

    110 Martinez-Carranza J, Falaggis K, Kozacki T. Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers[J]. Optics Letters, 2014, 39(2): 182–185.

    111 Zuo C, Chen Q, Yu Y, et al. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Optics Express, 2013, 21(5): 5346–5362.

    112 Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964, 36(8): 1627–1639.

    113 Cowley J M. Diffraction physics(2nd edition)[M]. Amsterdam: North-Holland, 1976.

    114 Jenkins M H, Long J M, Gaylord T K. Multifilter phase imaging with partially coherent light[J]. Applied Optics, 2014, 53(16): D29–D39.

    115 Zhang J S, Claus R A, Dauwels J, et al. Transport of intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes[J]. Optics Express, 2014, 22(9): 10661–10674.

    116 Barone-Nugent E D, Barty A, Nugent K A. Quantitative phase-amplitude microscopy I: Optical microscopy[J]. Journal of Microscopy, 2002, 206(3): 194–203.

    117 Streibl N. Three-dimensional imaging by a microscope[J]. Journal of the Optical Society of America A, 1985, 2(2): 121–127.

    118 Sheppard C J R. Three-dimensional phase imaging with the intensity transport equation[J]. Applied Optics, 2002, 41(28): 5951–5955.

    119 Guigay J P, Langer M, Boistel R, et al. Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region[J]. Optics Letters, 2007, 32(12): 1617–1619.

    120 Kou S S, Waller L, Barbastathis G, et al. Quantitative phase restoration by direct inversion using the optical transfer function[J]. Optics Letters, 2011, 36(14): 2671–2673.

    121 Jenkins M H, Gaylord T K. Quantitative phase microscopy via optimized inversion of the phase optical transfer function[J]. Applied Optics, 2015, 54(28): 8566–8579.

    122 Martinez-Carranza J, Falaggis K, Kozacki T. Multi-filter transport of intensity equation solver with equalized noise sensitivity[J]. Optics Express, 2015, 23(18): 23092–23107.

    123 Sun J, Zuo C, Chen Q. Iterative optimum frequency combination method for high efficiency phase imaging of absorptive objects based on phase transfer function[J]. Optics Express, 2015, 23(21): 28031–28049.

    124 Goodman J W. Statistical optics[M]. New York: Wiley-Interscience, 1985: 567.

    125 Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light[M]. UK: CPI Group Ltd, 2000.

    126 Streibl N. Phase imaging by the transport equation of intensity[J]. Optics Communications, 1984, 49(1): 6–10.

    127 Gureyev T, Paganin D M, Stevenson A W, et al. Generalized eikonal of partially coherent beams and its use in quantitative imaging[J]. Physical Review Letters, 2004, 93(6): 068103.

    128 Gureyev T E, Nesterets Y I, Paganin D M, et al. Linear algorithms for phase retrieval in the Fresnel region. 2. Partially coherent illumination[J]. Optics Communications, 2006, 259(2): 569–580.

    129 Zuo C, Chen Q, Tian L, et al. Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective[J]. Optics and Lasers in Engineering, 2015, 71: 20–32.

    130 Bastiaans M J. Application of the Wigner distribution function to partially coherent light[J]. Journal of the Optical Society of America A, 1986, 3(8): 1227–1238.

    131 Boashash B. Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals[J]. Proceedings of the IEEE, 1992, 80(4): 520–538.

    132 Iaconis C, Walmsley I A. Direct measurement of the two-point field correlation function[J]. Optics Letters, 1996, 21(21): 1783–1785.

    133 Raymer M G, Beck M, McAlister D. Complex wave-field reconstruction using phase-space tomography[J]. Physical Review Letters, 1994, 72(8): 1137–1140.

    134 Waller L, Situ G, Fleischer J W. Phase-space measurement and coherence synthesis of optical beams[J]. Nature Photonics, 2012, 6(7): 474–479.

    135 Ng R, Levoy M, Brédif M, et al. Light field photography with a hand-held plenoptic camera[J]. Computer Science Technical Report, 2005, 2(11): 1–11.

    136 Adelson E, Bergen J R. The plenoptic function and the elements of early vision[M]. //Computational models of visual processing. Cambridge: MIT Press, 1991: 3–20.

    137 Levoy M, Hanrahan P. Light field rendering[C]. Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, 1996: 31–42.

    138 Walther A. Radiometry and coherence[J]. Journal of the Optical Society of America, 1968, 58(9): 1256–1259.

    139 Zhang Z Y, Levoy M. Wigner distributions and how they relate to the light field[C]. IEEE International Conference on the Computational Photography, San Francisco, 2009.

    140 Zuo C, Chen Q, Asundi A. Transport of intensity equation: A new approach to phase and light field[C]. SPIE, 2014, 9271: 92710H.

    141 Orth A, Crozier K B. Light field moment imaging[J]. Optics Letters, 2013, 38(15): 2666–2668.

    142 Liu J, Xu T, Yue W, et al. Light-field moment microscopy with noise reduction[J]. Optics Express, 2015, 23(22): 29154–29162.

    143 Blanchard P M, Fisher D J, Woods S C, et al. Phase-diversity wave-front sensing with a distorted diffraction grating[J]. Applied Optics, 2000, 39(35): 6649–6655.

    144 di Martino J M, Ayubi G A, Dalchiele E A, et al. Single-shot phase recovery using two laterally separated defocused images[J]. Optics Communications, 2013, 293: 1–3.

    145 Zuo C, Sun J, Zhang J, et al. Lensless phase microscopy and diffraction tomography with multi-angle and multiwavelength illuminations using a LED matrix[J]. Optics Express, 2015, 23(11): 14314–14328.

    146 Allman B E, McMahon P J, Nugent K, et al. Phase radiography with neutrons[J]. Nature, 2000, 408(6809): 158–159.

    147 Volkov V, Zhu Y. Lorentz phase microscopy of magnetic materials[J]. Ultramicroscopy, 2004, 98(2): 271-281.

    148 Dorrer C, Zuegel J D. Optical testing using the transport-of-intensity equation[J]. Optics Express, 2007, 15(12): 7165–7175.

    149 Shomali R, Darudi A, Nasiri S. Application of irradiance transport equation in aspheric surface testing[J]. Optik, 2012, 123(14): 1282–1286.

    150 Ross G J, Bigelow A W, Randers-Pehrson G, et al. Phase-based cell imaging techniques for microbeam irradiations[J]. Nuclear Instruments and Methods in Physics Research Section B, 2005, 241(1): 387–391.

    151 Curl C L, Bellair C J, Harris P J, et al. Quantitative phase microscopy: A new tool for investigating the structure and function of unstained live cells[J]. Clinical Experimental Pharmacology and Physiology, 2004, 31(12): 896–901.

    152 Curl C L, Bellair C, Harris P, et al. Single cell volume measurement by quantitative phase microscopy(QPM): A case study of erythrocyte morphology[J]. Cellular Physiology and Biochemistry, 2006, 17(5–6): 193–200.

    153 Dragomir N M, Goh X M, Curl C L, et al. Quantitative polarized phase microscopy for birefringence imaging[J]. Optics Express, 2007, 15(26): 17690–17698.

    154 Ampem-Lassen E, Huntington S T, Dragomir N M, et al. Refractive index profiling of axially symmetric optical fibers: A new technique[J]. Optics Express, 2005, 13(9): 3277–3282.

    155 Roberts A, Ampem-Lassen E, Barty A, et al. Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy[J]. Optics Letters, 2002, 27(23): 2061–2063.

    156 Bostan E, Froustey E, Nilchian M, et al. Variational phase imaging using the transport-of-intensity equation[J]. IEEETransactions on Image Processing, 2016, 25(2): 807–817.

    157 Nguyen T, Nehmetallah G, Tran D, et al. Fully automated, high speed, tomographic phase object reconstruction using the transport of intensity equation in transmission and reflection configurations[J]. Applied Optics, 2015, 54(35): 10443–10453.

    158 Zuo C, Chen Q, Asundi A. Comparison of digital holography and transport of intensity for quantitative phase contrast imaging[M]. //Fringe 2013. Heidelberg: Springer Berlin Heidelberg, 2014: 137–142.

    159 Allen L, Faulkner H M L, Nugent K, et al. Phase retrieval from images in the presence of first-order vortices[J]. Physical Review E, 2001, 63(3): 037602.

    160 Lubk A, Guzzinati G, Börrnert F, et al. Transport of intensity phase retrieval of arbitrary wave fields including vortices[J]. Physical Review Letters, 2013, 111(17): 173902.

This Article

ISSN:0258-7025

CN: 31-1339/TN

Vol 43, No. 06, Pages 227-257

June 2016

Downloads:5

Share
Article Outline

Abstract

  • 1 Introduction
  • 2Basic concepts
  • 3Solutions to TIE
  • 4 Difference estimation of axial intensity derivative
  • 5Partially coherent imaging
  • 6Applications of TIE in the field of phase microscopy
  • 7Conclusions
  • References