Study on efficient separation of SF6/N2 mixture using a hydrothermally stable metal-organic framework

CHANG Miao1 LIU Lei1 YANG Qingyuan1 LIU Dahuan1 ZHONG Chongli1,2

(1.State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China 100029)
(2.State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, China 300387)
【Knowledge Link】sulfur hexafluoride

【Abstract】The efficient separation of the SF6/N2 mixture has important practical significance for the recovery of SF6 gas and the reduction of the greenhouse effect caused by its direct discharge. In this work, a metal-organic framework (Cu-MOF-OMe) was prepared with two different types and properties of pores. It possesses dually-functionalized characteristics of coordinatively unsaturated metal sites and methoxy groups, which exhibits good hydrothermal stability and adsorptive regenerability. This material also shows excellent separation performance for the SF6/N2 mixture. At 298 K and 105 Pa, the observed adsorption selectivity (361) and sorbent selection parameter (SSP) value (780) are higher than those of various porous materials reported so far. Theoretical calculation results indicate that the underlying reason of such excellent separation properties is attributed to the cooperative effects of the open Cu sites in the hydrophilic pores and the abundant methoxy groups in the hydrophobic pores. The findings may provide valuable foundation for developing highly efficient materials for practical of SF6/N2 separation.

【Keywords】 metal-organic frameworks; unsaturated metal sites; sulfur hexafluoride; nitrogen; separation;


【Funds】 National Natural Science Foundation of China (21536001, 21722602, 21576009)

Download this article


    [1] Tsai W T. The decomposition products of sulfur hexafluoride (SF6): reviews of environmental and health risk analysis [J]. Fluorine Chem., 2007, 128: 1345–1352.

    [2] Kim M B, Lee S J, Lee C Y, et al. High SF6 selectivities and capacities in isostructural metal-organic frameworks with proper pore sizes and highly dense unsaturated metal sites [J]. Micropor. Mesopor. Mat., 2014, 190: 356–361.

    [3] Christophorou L G, Vanbrunt R J. SF6/N2 mixtures-basic and HV insulation properties [J]. IEEE Trans. Dielectr. Electr. Insul., 1995, 2: 952–1003.

    [4] Yamamoto O, Takuma T, Kinouchi M. Recovery of SF6 from N2/SF6 gas mixtures by using a polymer membrane [J]. IEEE Electr. Insul. Mag., 2002, 18: 32–37.

    [5] Imai T, Inohara T, Toyoda M. Use of zeolite filter in portable equipment for recovering SF6 in SF6/N2 mixtures [J]. IEEE Trans. Dielectr. Electr. Insul., 2004, 11: 166–173.

    [6] Toyoda M, Murase H, Imai T, et al. SF6 reclaimer from SF6/N2 mixtures by gas separation with molecular sieving effect [J]. IEEE Trans. Power Deliv., 2003, 18: 442–448.

    [7] Senkovska I, Barea E, Navarro J A R, et al. Adsorptive capturing and storing greenhouse gases such as sulfur hexafluoride and carbon tetrafluoride using metal-organic frameworks [J]. Micropor. Mesopor. Mat., 2012, 156: 115–120.

    [8] Lee E K, Lee J D, Lee H J, et al. Pure SF6 and SF6-N2 mixture gas hydrates equilibrium and kinetic characteristics [J]. Environ. Sci. Technol., 2009, 43: 7723–7727.

    [9] Cha I, Lee S, Lee J D, et al. Separation of SF6 from gas mixtures using gas hydrate formation [J]. Environ. Sci. Technol., 2010, 44: 6117–6122.

    [10] Skarmoutsos I, Eddaoudi M, Maurin G. Highly tunable sulfur hexafluoride separation by interpenetration control in metal organic frameworks [J]. Micropor. Mesopor. Mat., 2019, 281: 44–49.

    [11] Chuah C Y, Goh K L, Bae T H. Hierarchically structured HKUST‑1 nanocrystals for enhanced SF6 capture and recovery [J]. J. Phys. Chem. C, 2017, 121: 6748–6755.

    [12] Skarmoutsos I, Tamiolakis G, Froudakis G E. Highly selective separation and adsorption-induced phase transition of SF6-N2 fluid mixtures in three-dimensional carbon nanotube networks [J]. J. Supercrit. Fluids, 2016, 113: 89–95.

    [13] Takase A, Kanoh H, Ohba T. Wide carbon nanopores as efficient sites for the separation of SF6 from N2 [J]. Sci. Rep., 2015, 5: 11994.

    [14] Kim P J, You Y W, Park H, et al. Separation of SF6 from SF6/N2 mixture using metal-organic framework MIL-100(Fe) granule [J]. Chem. Eng. J., 2015, 262: 683–690.

    [15] Kim M B, Kim K M, Kim T H, et al. Highly selective adsorption of SF6 over N2 in a bromine-functionalized zirconium-based metalorganic framework [J]. Chem. Eng. J., 2018, 339: 223–229.

    [16] Kim M B, Yoon T U, Hong D Y, et al. High SF6/N2 selectivity in a hydrothermally stable zirconium-based metal-organic framework [J]. Chem. Eng. J., 2015, 276: 315–321.

    [17] Sun R, Tai C W, Strømme M, et al. Hierarchical porous carbon synthesized from novel porous amorphous calcium or magnesium citrate with enhanced SF6 uptake and SF6/N2 selectivity [J]. ACS Appl. Nano Mater., 2019, 2: 778–789.

    [18] Hasell T, Miklitz M, Stephenson A, et al. Porous organic cages for sulfur hexafluoride separation [J]. J. Am. Chem. Soc., 2016, 138: 1653–1659.

    [19] Fang X K, Hu X, Maenhout G J, et al. Sulfur hexafluoride (SF6) emission estimates for china: an inventory for 1990–2010 and a projection to 2020 [J]. Environ. Sci. Technol., 2013, 47: 3848–3855.

    [20] Chiang Y C, Wu P Y. Adsorption equilibrium of sulfur hexafluoride on multi-walled carbon nanotubes [J]. J. Hazard. Mater., 2010, 178: 729–738.

    [21] Mohindra V, Chae H, Sawin H H, et al. Abatement of perfluorocompounds (PFC's) in a microwave tubular reactor using O as an additive gas [J]. IEEE Trans. Plasma Sci., 1997, 10: 399–407.

    [22] Ravishankara A R, Solomon S, Turnipseed A A, et al. Atmospheric lifetimes of long–lived halogenated species [J]. Science, 1993, 259: 194–199.

    [23] Builes S, Roussel T, Vega L F. Optimization of the separation of sulfur hexafluoride and nitrogen by selective adsorption using Monte Carlo simulations [J]. AICh E J. 2011, 57: 962–974.

    [24] Kim D H, Ko Y H, Kim T H, et al. Separation of N2/SF6 binary mixtures using polyethersulfone (PESf) hollow fiber membrane [J]. Korean J. Chem. Eng., 2012, 29: 1081–1085.

    [25] Cho W S, Lee K H, Chang H J, et al. Evaluation of pressure–temperature swing adsorption for sulfur hexafluoride (SF6) recovery from SF6 and N2 gas mixture [J]. Korean J. Chem. Eng., 2011, 28: 2196–2201.

    [26] Ho M T, Allinson G W, Wiley D E. Reducing the cost of CO2 capture from flue gases using pressure swing adsorption [J]. Ind. Eng. Chem. Res., 2008, 47: 4883–4890.

    [27] Wiersum A D, Chang J S, Serre C, et al. An adsorbent performance indicator as a first step evaluation of novel sorbents for gas separations: application to metal-organic frameworks [J]. Langmuir, 2013, 29: 3301–3309.

    [28] Tong M M, Lan Y S, Yang Q Y, et al. Exploring the structure–property relationships of covalent organic frameworks for noble gas separations [J]. Chem. Eng. Sci., 2017, 168: 456–464.

    [29] Cui X L, Chen K J, Xing H B, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene [J]. Science, 2016, 353: 141–144.

    [30] Li B, Cui X L, O'Nolan D, et al. An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity [J]. Adv. Mater., 2017, 29: 1704210.

    [31] Yang L F, Cui X L, Yang Q W, et al. A single-molecule propyne trap: highly efficient removal of propyne from propylene with anion-pillared ultramicroporous materials [J]. Adv. Mater., 2018, 30: 1705374.

    [32] Li L B, Wen H M, He C H, et al. A metal-organic framework with suitable pore size and specific functional sites for the removal of trace propyne from propylene [J]. Angew. Chem. Int. Ed., 2018, 57: 15183–15188.

    [33] Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and application of metal-organic frameworks [J]. Science, 2013, 341: 974–986.

    [34] Mueller U, Schubert M, Teich F, et al. Metal-organic frameworks-prospective industrial applications [J]. J. Mater. Chem., 2006, 16: 626–636.

    [35] Bae Y S, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture [J]. Angew. Chem. Int. Ed., 2011, 50: 11586–11596.

    [36] Biswas S, Vanpoucke D E P, Verstraelen T, et al. New functionalized metal-organic frameworks MIL-47-X (X = –Cl, –Br, –CH3, –CF3, –OH, –OCH3): synthesis, characterization, and CO2 adsorption properties [J]. J. Phys. Chem. C, 2013, 117: 22784–22796.

    [37] Au V K M, Nakayashiki K, Huang H B, et al. Stepwise expansion of layered metal-organic frameworks for nonstochastic exfoliation into porous nanosheets [J]. J. Am. Chem. Soc., 2019, 141: 53–57.

    [38] Bachman J E, Reed D A, Kapelewski M T, et al. Enabling alternative ethylene production through its selective adsorption in the metal-organic framework Mn2(m-dobdc) [J]. Energy Environ. Sci., 2018, 11: 2423–2431.

    [39] Wang K K, Huang H L, Liu D H, et al. Covalent triazine-based frameworks with ultramicropores and high nitrogen contents for highly selective CO2 capture [J]. Environ. Sci. Technol., 2016, 50;4869–4876.

    [40] Breneman C M, Wiberg K B. Determining atom-centered monopoles from molecular electrostatic potentials: the need for high sampling density in formamide conformational analysis [J]. J. Comput. Chem., 1990, 11: 361–373.

    [41] Dellis D, Samios J. Molecular force field investigation for sulfur hexafluoride: a computer simulation study [J]. Fluid Phase Equilibria, 2010, 291: 81–89.

    [42] Potoff J J, Siepmann J I. Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen [J]. AICh E J., 2001, 47: 1676–1682.

    [43] RappéA K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations [J]. J. Am. Chem. Soc., 1992, 114: 10024–10035.

    [44] Vlugt T J H, García P E, Dubbeldam D, et al. Computing the heat of adsorption using molecular simulations: the effect of strong coulombic interactions [J]. J. Chem. Theory Comput., 2008, 4: 1107–1118.

    [45] Chen Y J, Li P, Modica J A, et al. Acid-resistant mesoporous metal-organic framework toward oral insulin delivery: protein encapsulation, protection, and release [J]. J. Am. Chem. Soc., 2018, 140: 5678–5681

    [46] Li L Y, Yang L F, Wang J W, et al. Highly efficient separation of methane from nitrogen on a squarate-based metal-organic framework [J]. AICh E J., 2018, 64: 3681–3689.

    [47] Hu J L, Sun T J, Liu X W, et al. Separation of CH4/N2 mixtures in metal-organic frameworks with 1D micro-channels [J]. RSC Adv., 2016, 6: 64039–64046.

    [48] Lin R B, Wu H, Li L B, et al. Boosting ethane/ethylene separation within isoreticular ultramicroporous metal-organic frameworks [J]. J. Am. Chem. Soc., 2018, 140: 12940–12946.

This Article


CN: 11-1946/TQ

Vol 71, No. 01, Pages 320-328

January 2020


Article Outline



  • Introduction
  • 1 Experimental materials and methods
  • 2 Experimental results and discussion
  • 3 Conclusion
  • Symbols
  • References