负载型铟基催化剂二氧化碳加氢动力学研究

曹晨熙1 陈天元1 丁晓旭1 黄海1 徐晶1 韩一帆1

(1.化学工程联合国家重点实验室华东理工大学, 上海 200237)

【摘要】探讨了载体对铟基催化剂上CO2加氢动力学的影响。通过浸渍法制备了不同载体的负载型In基催化剂,仅ⅣB族元素(Ti,Zr,Hf)氧化物负载的In基催化剂表现出明显的CO2加氢活性,其中In1/HfO2和In1/ZrO2催化剂具有较高的甲醇选择性,而In1/TiO2催化剂主要起催化逆水气变换反应的作用。通过稳态动力学、高压原位漫反射红外和程序升温实验等动力学手段,证明反应条件下In1/ZrO2和In1/HfO2上的关键表面反应中间体是甲酸盐与甲氧基,甲醇主要通过表面甲酸盐的逐步加氢生成。In1/HfO2具有最强的氢解离与加氢能力,因此最有利于甲醇合成。In1/TiO2在CO2加氢中表面无明显含碳中间物种,高CO选择性可能与界面氧空缺位点促进redox循环以及甲酸盐中间体分解相关。

【关键词】 二氧化碳; 催化剂; 动力学; 甲醇合成; 原位红外; 程序升温实验;

【DOI】

【基金资助】 国家重点研发计划项目(2018YFB0605803) 国家自然科学基金项目(21808058) 上海市青年科技英才扬帆计划项目(18YF1406100)

Download this article

    References

    [1] Mcfarlan A. Techno-economic assessment of pathways for electricity generation in northern remote communities in Canada using methanol and dimethyl ether to replace diesel[J]. Renew.Sust. Energ. Rev., 2018, 90:863-876.

    [2]Yang P P, Sun Q, Zhang Y L, et al. Research progress of the role of CO2in methanol synthesis[J]. Chem. Ind. Eng. Prog., 2018, 37(S1):94-101.

    [3] Ipatieff V, Monroe G. Synthesis of methanol from carbon dioxide and hydrogen over copper-alumina catalysts. Mechanism of reaction[J]. J. Am. Chem. Soc., 1945, 67(12):2168-2171.

    [4] Joo O S, Jung K D, Jung Y S. CAMERE process for methanol synthesis from CO2hydrogenation[J]. Stud. Surf. Sci. Catal., 2004,153:67-72.

    [5]Li Q X, Wang Z B, Lou S J, et al. Research progress in methanol production from carbon dioxide hydrogenation[J]. Modern Chemical Industry, 2019,(5):19-23.

    [6] Bao J, Yang G H, Yoneyama Y, et al. Significant advances in C1catalysis:highly efficient catalysts and catalytic reactions[J]. ACS Catal., 2019, 9(4):3026-3053.

    [7] Kattel S, Liu P, Chen J G. Tuning selectivity of CO2hydrogenation reactions at the metal/oxide interface[J]. J. Am. Chem. Soc., 2017,139(29):9739-9754.

    [8] Arena F, Mezzatesta G, Zafarana G, et al. Effects of oxide carriers on surface functionality and process performance of the Cu–ZnO system in the synthesis of methanol via CO2hydrogenation[J]. J.Catal., 2013, 300:141-151.

    [9] Angelo L, Kobl K, Tejada L M M, et al. Study of CuZnMOx oxides(M=Al, Zr, Ce, CeZr)for the catalytic hydrogenation of CO2into methanol[J]. C. R. Chim., 2015, 18(3):250-260.

    [10] Zhan H J, Li F, Xin C L, et al. Performance of the La-Mn-ZnCu-O based perovskite precursors for methanol synthesis from CO2hydrogenation[J]. Catal. Lett., 2015, 145(5):1177-1185.

    [11] Wu J, Saito M, Takeuchi M, et al. The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich Feed[J]. Appl. Catal. A Gen., 2001, 218(1):235-240.

    [12] Qu J, Zhou X, Xu F, et al. Shape effect of Pd-promoted Ga2O3nanocatalysts for methanol synthesis by CO2hydrogenation[J]. J.Phys. Chem. C, 2014, 118(42):24452-24466.

    [13] Jiang X, Koizumi N, Guo X, et al. Bimetallic Pd–Cu catalysts for selective CO2hydrogenation to methanol[J]. Appl. Catal. B Environ., 2015, 170/171:173-185.

    [14] Wang J, Li G, Li Z, et al. A highly selective and stable ZnO-ZrO2solid solution catalyst for CO2hydrogenation to methanol[J]. Sci.Adv., 2017, 3(10):e1701290.

    [15] Martin O, Mart N A J, Mondelli C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2hydrogenation[J].Angew. Chem. Int. Ed., 2016, 55(21):6261-6265.

    [16] Sun K, Fan Z, Ye J, et al. Hydrogenation of CO2to methanol over In2O3catalyst[J]. J. CO2Util., 2015, 12:1-6.

    [17] Gao P, Li S, Bu X, et al. Direct conversion of CO2into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nat. Chem.,2017, 9:1019-1024.

    [18] Gao P, Dang S, Li S, et al. Direct production of lower olefins from CO2conversion via bifunctional catalysis[J]. ACS Catal., 2018, 8(1):571-578.

    [19] Su J, Wang D, Wang Y, et al. Direct conversion of syngas into light olefins over zirconium-doped indium(Ⅲ)oxide and SAPO-34 bifunctional catalysts:design of oxide component and construction of reaction network[J]. ChemCatChem, 2018, 10(7):1536-1541.

    [20] Zhang M, Dou M, Yu Y. DFT study of CO2conversion on InZr3(110)surface[J]. PCCP, 2017, 19(42):28917-28927.

    [21] Zhang M, Dou M, Yu Y. Theoretical study of the promotional effect of ZrO2on In2O3catalyzed methanol synthesis from CO2hydrogenation[J]. Appl. Surf. Sci., 2018, 433(Suppl. C):780-789.

    [22] Ye J, Liu C, Ge Q. DFT study of CO2adsorption and hydrogenation on the In2O3surface[J]. J. Phys. Chem. C, 2012, 116(14):7817-7825.

    [23] Ye J, Liu C, Mei D, et al. Active oxygen vacancy site for methanol synthesis from CO2hydrogenation on In2O3(110):a DFT study[J].ACS Catal., 2013, 3(6):1296-1306.

    [24] Gervasini A, Perdigon-Melon J A, Guimon C, et al. An in-depth study of supported In2O3catalysts for the selective catalytic reduction of NOx:the influence of the oxide support[J]. J. Phys.Chem. B, 2006, 110(1):240-249.

    [25] Chen M, Xu J, Cao Y, et al. Dehydrogenation of propane over In2O3-Al2O3mixed oxide in the presence of carbon dioxide[J]. J.Catal., 2010, 272(1):101-108.

    [26] Mikhaylov R V, Nikitin K V, Glazkova N I, et al. Temperatureprogrammed desorption of CO2, formed by CO photooxidation on TiO2surface[J]. J. Photoch. Photobio. A, 2018, 360:255-261.

    [27] Rotzinger F P, Kesselman-Truttmann J M, Hug S J, et al.Structure and vibrational spectrum of formate and acetate adsorbed from aqueous solution onto the TiO2rutile(110)surface[J]. J. Phys. Chem. B, 2004, 108(16):5004-5017.

    [28] Coronado J M, Kataoka S, Tejedor-Tejedor I, et al. Dynamic phenomena during the photocatalytic oxidation of ethanol and acetone over nanocrystalline TiO2:simultaneous FTIR analysis of gas and surface species[J]. J. Catal., 2003, 219(1):219-230.

    [29] Larmier K, Liao W C, Tada S, et al. CO2to methanol hydrogenation on zirconia-supported copper nanoparticles:reaction intermediates and the role of the metal–support interface[J]. Angew. Chem. Int. Ed., 2017, 56(9):2318-2323.

    [30] Kattel S, Yan B H, Yang Y X, et al. Optimizing binding energies of key intermediates for CO2hydrogenation to methanol over oxide-supported copper[J]. J. Am. Chem. Soc., 2016, 138(38):12440-12450.

    [31] Fisher I A, Bell A T. In-situ infrared study of methanol synthesis from H2/CO2over Cu/SiO2and Cu/ZrO2/SiO2[J]. J. Catal., 1997,172(1):222-237.

    [32] Fisher I A, Woo H C, Bell A T. Effects of zirconia promotion on the activity of Cu/SiO2for methanol synthesis from CO/H2and CO2/H2[J]. Catal. Lett., 1997, 44(1):11-17.

    [33] Ouyang F, Kondo J N, Maruya K I, et al. Site conversion of methoxy species on ZrO2[J]. J. Phys. Chem. B, 1997, 101(25):4867-4869.

    [34] Paulino P N, Salim V M M, Resende N S. Zn-Cu promoted TiO2photocatalyst for CO2reduction with H2O under UV light[J]. Appl.Catal. B Environ., 2016, 185:362-370.

    [35] Kim S S, Lee H H, Hong S C. The Effect of the morphological characteristics of TiO2supports on the reverse water-gas shift reaction over Pt/TiO2catalysts[J]. Appl. Catal. B Environ., 2012,119/120:100-108.

    [36] Chen X, Su X, Duan H, et al. Catalytic performance of the Pt/TiO2catalysts in reverse water gas shift reaction:controlled product selectivity and a mechanism study[J]. Catal. Today, 2017, 281:312-318.

This Article

ISSN:0438-1157

CN: 11-1946/TQ

Vol 70, No. 10, Pages 3985-3993+4100

October 2019

Downloads:1

Share
Article Outline

摘要

  • 引言
  • 1 实验部分
  • 2 结果与讨论
  • 3 结论
  • 参考文献