CO耐硫甲烷化MoS2/Si-ZrO2催化剂的失活原因研究

顾佳1 辛忠1,2 高文莉1 何璐铭1 赵瑞1

(1.华东理工大学化工学院上海市多相结构材料化学工程重点实验室, 上海 200237)
(2.华东理工大学化工学院化学工程联合国家重点实验室, 上海 200237)

【摘要】采用等体积浸渍法制备MoS2/Si-ZrO2催化剂,并对其CO耐硫甲烷化的催化活性稳定性进行评估。结果表明在2H2∶2CO∶1N2(摩尔比)、反应压力2.5 MPa、反应温度450℃、硫含量0.01%及质量空速6000 ml/(g·h)的反应条件下,100 h后CO转化率下降11%。深入进行氢气程序升温还原(H2-TPR)、X射线光电子能谱(XPS)、拉曼光谱(RS)、等离子体发射光谱(ICP-OES)、高分辨透射电子显微镜(HRTEM)、热重分析(TGA)以及元素分析等表征后,发现反应后催化剂表面无明显积炭,但出现了明显的团聚现象。而催化剂失活的根本原因是硫流失的发生,导致具有催化活性的桥键S22-物种转变为S2-物种2-H2S。

【关键词】 失活; 催化剂; 稳定性; 天然气; 耐硫甲烷化; 桥键S22-物种; 硫流失;

【DOI】

【基金资助】 国家自然科学基金项目(U1203293,21776091,21808062) 中央高校基本科研业务费专项资金(22A1817025) 上海学科首席科学家项目(10Xd1401500) 中国博士后科学基金项目(2017M611474)

Download this article

    References

    [1] Rönsch S, Schneider J, Matthischke S, et al. Review on methanation-from fundamentals to current projects[J]. Fuel, 2016,166(2):276-296.

    [2] Cao H X, Zhang J, Guo C L, et al. Highly dispersed Ni nanoparticles on 3D-mesoporous KIT-6 for CO methanation:effect of promoter species on catalytic performance[J]. Chinese Journal of Catalysis, 2017, 38(7):1127-1137.

    [3] Zhang X, Rui N, Jia X, et al. Effect of decomposition of catalyst precursor on Ni/CeO2activity for CO methanation[J]. Chinese Journal of Catalysis, 2019, 40(4):495-503.

    [4] Tao M, Xin Z, Meng X, et al. Highly dispersed nickel within mesochannels of SBA-15 for CO methanation with enhanced activity and excellent thermostability[J]. Fuel, 2017, 188(1):267-276.

    [5] Gao J J, Liu Q, Gu F N, et al. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Advances, 2015, 5(29):22759-22776.

    [6] Andersson R, Boutonnet M,Järås S. Higher alcohols from syngas using a K/Ni/MoS2catalyst:trace sulfur in the product and effect of H2S-containing feed[J]. Fuel, 2014, 115(1):544-550.

    [7] Shi G, Han W, Yuan P, et al. Sulfided Mo/Al2O3hydrodesulfurization catalyst prepared by ethanol-assisted chemical deposition method[J]. Chinese Journal of Catalysis,2013, 34(4):659-666.

    [8] Hao L, Xiong G, Liu L, et al. Preparation of highly dispersed desulfurization catalysts and their catalytic performance in hydrodesulfurization of dibenzothiophene[J]. Chinese Journal of Catalysis, 2016, 37(3):412-419.

    [9] Li M, Wang D, Li J, et al. Surfactant-assisted hydrothermally synthesized MoS2samples with controllable morphologies and structures for anthracene hydrogenation[J]. Chinese Journal of Catalysis, 2017, 38(3):597-606.

    [10] Wang B, Yu W, Wang W, et al. Effect of boron addition on the MoO3/CeO2–Al2O3catalyst in the sulfur-resistant methanation[J]. Chinese Journal of Chemical Engineering, 2018, 26(3):509-513.

    [11] Mortensen P M, Gardini D, Damsgaard C D, et al. Deactivation of Ni-MoS2by bio-oil impurities during hydrodeoxygenation of phenol and octanol[J]. Applied Catalysis A:General, 2016, 523(8):159-170.

    [12] Kubička D, Horáček J. Deactivation of HDS catalysts in deoxygenation of vegetable oils[J]. Applied Catalysis A:General,2011, 394(1/2):9-17.

    [13] Vogelaar B M, Steiner P, van Langeveld A D, et al. Deactivation of Mo/Al2O3and NiMo/Al2O3catalysts during hydrodesulfurization of thiophene[J]. Applied Catalysis A:General, 2003, 251(1):85-92.

    [14] Wang H, Li G L, Rogers K, et al. Hydrotreating of waste cooking oil over supported CoMoS catalyst catalyst-deactivation mechanism study[J]. Molecular Catalysis, 2017, 443(12):228-240.

    [15] Li Z, He J, Wang H, et al. Enhanced methanation stability of nano-sized MoS2catalysts by adding Al2O3[J]. Frontiers of Chemical Science and Engineering, 2016, 9(1):33-39.

    [16] Afanasiev P. The influence of reducing and sulfiding conditions on the properties of unsupported MoS2-based catalysts[J]. Journal of Catalysis, 2010, 269(2):269-280.

    [17] Dave M, Rajagopal A, Damm-Ruttensperger M, et al.Understanding homogeneous hydrogen evolution reactivity and deactivation pathways of molecular molybdenum sulfide catalysts[J]. Sustainable Energy&Fuels, 2018, 2(5):1020-1026.

    [18] Xi F X, Bogdanoff P, Harbauer K, et al. Structural transformation identification of sputtered amorphous MoSx as an efficient hydrogen-evolving catalyst during electrochemical activation[J].ACS Catalysis, 2019, 9(3):2368-2380.

    [19] Gu J, Xin Z, Tao M, et al. Effect of Si-modified zirconia on the properties of MoO3/Si-ZrO2catalysts for sulfur-resistant CO methanation[J]. Applied Catalysis A:General, 2019, 575(4):230-237.

    [20] Gu J, Xin Z, Tao M, et al. Effect of reflux digestion time on MoO3/ZrO2catalyst for sulfur-resistant CO methanation[J]. Fuel, 2019,241(4):129-137.

    [21] Zhang L, Fu W Q, Xiang M, et al. MgO nanosheet assemblies supported Co Mo catalyst with high activity in hydrodesulfurization of dibenzothiophene[J]. Industrial&Engineering Chemistry Research, 2015, 54(21):5580-5588.

    [22] Chang Y H, Nikam R D, Lin C T, et al. Enhanced electrocatalytic activity of MoSx on TCNQ-treated electrode for hydrogen evolution reaction[J]. ACS Applied Materials Interfaces, 2014, 6(20):17679-17685.

    [23] He M, Kong F, Yin G, et al. Enhanced hydrogen evolution reaction activity of hydrogen-annealed vertical MoS2nanosheets[J]. RSC Advances, 2018, 8(26):14369-14376.

    [24] Paul K K, Sreekanth N, Biroju R K, et al. Strongly enhanced visible light photoelectrocatalytic hydrogen evolution reaction in an n-doped MoS2/TiO2(B)heterojunction by selective decoration of platinum nanoparticles at the MoS2edge sites[J]. Journal of Materials Chemistry A, 2018, 6(45):22681-22696.

    [25] Ma L, Zhou X P, Xu X Y, et al. One-step hydrothermal synthesis of few-layered and edge-abundant MoS2/C nanocomposites with enhanced electrocatalytic performance for hydrogen evolution reaction[J]. Advanced Powder Technology, 2015, 26(5):1273-1280.

    [26] Baubet B, Devers E, Hugon A, et al. The influence of MoS2 slab2D morphology and edge state on the properties of aluminasupported molybdenum sulfide catalysts[J]. Applied Catalysis A:General, 2014, 487(10):72-81.

    [27] Yin Z J, Zhao J, Wang B W, et al. Insight for the effect of bridging S22-in molybdenum sulfide catalysts toward sulfur-resistant methanation[J]. Applied Surface Science, 2019, 471(12):670-677.

    [28] Zhang H P, Lin H F, Zheng Y, et al. Understanding of the effect of synthesis temperature on the crystallization and activity of nanoMoS2catalyst[J]. Applied Catalysis B:Environmental, 2015, 165(4):537-546.

    [29] Panpranot J, Kaewgun S, Praserthdam P. Metal-support interaction in mesoporous silica supported cobalt FischerTropsch catalysts[J]. Reaction Kinetics and Catalysis Letters,2005, 85(2):299-304.

    [30] Ting L R L, Deng Y L, Ma L, et al. Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction[J]. ACS Catalysis, 2016, 6(2):861-867.

    [31] Afanasiev P, Jobic H, Lorentz C, et al. Low-temperature hydrogen interaction with amorphous molybdenum sulfides MoSx[J]. Journal of Physical Chemistry C, 2009, 113(10):4136-4146.

This Article

ISSN:0438-1157

CN: 11-1946/TQ

Vol 70, No. 10, Pages 3941-3948

October 2019

Downloads:0

Share
Article Outline

摘要

  • 引言
  • 1 实验材料和方法
  • 2 实验结果与讨论
  • 3 结论
  • 符号说明
  • 参考文献