离子液体/硫酸催化C4烷基化反应过程强化——表界面特性研究

曹飘1 郑伟中1 孙伟振1 赵玲1

(1.化学工程联合国家重点实验室华东理工大学, 上海 200237)
【知识点链接】烷基化

【摘要】利用分子动力学 (MD) 模拟研究了不同支链长度以及官能团的Brønsted酸性离子液体 (BILs) 对H2SO4/C4烷烯界面特性的调控。结果表明, BILs的加入可以明显增强C4烷烯在两相界面处的溶解和扩散, 有利于烷基化油品的提升。烷基链较长的阳离子表现出较强的界面密度富集现象, 并且其支链倾向于伸入C4烷烯相, 有利于界面性质的增强。阳离子支链的增长能够促进C4烷烯的溶解, 同时增大了C4烷烯的界面存留率, 不利于其界面扩散。另外, 相比于非磺酸功能化离子液体 (non-SFILs) , 磺酸功能化离子液体 (SFILs) 促进了C4烷烯的溶解, 但抑制了C4烷烯的扩散。本文在C4烷基化界面性质方面的研究有利于深入理解C4烷基化过程, 相关结果有望为烷基化过程强化和新型催化剂的优化和设计提供帮助。

【关键词】 MD模拟; Brønsted离子液体; 液液界面; 烷基化; SFILs;

【DOI】

【基金资助】 国家自然科学基金项目 (91434108) the National Natural Science Foundation of China (91434108)

Download this article

    References

    [1]CORMA A, MARTINEZ A.Chemistry, catalysts, and processes for isoparaffin-olefin alkylation:actual situation and future trends[J].Catalysis Reviews-Science and Engineering, 1993, 35 (4) :483-570.

    [2]HOMMELTOFT S I.Isobutane alkylation:recent developments and future perspectives[J].Applied Catalysis A:General, 2001, 221 (1/2) :421-428.

    [3]BUSCA G.Acid catalysts in industrial hydrocarbon chemistry[J].Chemical Reviews, 2007, 107 (11) :5366-5410.

    [4]SIEVERS C, LIEBERT J S, STRATMANN M M, et al.Comparison of zeolites La X and La Y as catalysts for isobutane/2-butene alkylation[J].Applied Catalysis A:General, 2008, 336 (1/2) :89-100.

    [5]SARSANI V, SUBRAMANIAM B.Isobutane/butene alkylation on microporous and mesoporous solid acid catalysts:probing the pore transport effects with liquid and near critical reaction media[J].Green Chemistry, 2009, 11 (1) :102-108.

    [6]WELTON T.Room-temperature ionic liquids.Solvents for synthesis and catalysis[J].Chemical Reviews, 1999, 99 (8) :2071-2084.

    [7]HAYES R, WARR G G, ATKIN R.Structure and nanostructure in ionic liquids[J].Chemical Reviews, 2015, 115 (13) :6357-6426.

    [8]TANG S, SCURTO A M, SUBRAMANIAM B.Improved 1-butene/isobutane alkylation with acidic ionic liquids and tunable acid/ionic liquid mixtures[J].Journal of Catalysis, 2009, 268 (2) :243-250.

    [9]XING X, ZHAO G, CUI J, et al.Isobutane alkylation using acidic ionic liquid catalysts[J].Catalysis Communications, 2012, 26:68-71.

    [10]HUANG Q, ZHAO G, ZHANG S, et al.Improved catalytic lifetime of H2SO4 for isobutane alkylation with trace amount of ionic liquids buffer[J].Industrial&Engineering Chemistry Research, 2015, 54 (5) :1464-1469.

    [11]WANG A, ZHAO G, LIU F, et al.Anionic clusters enhanced catalytic performance of protic acid ionic liquids for isobutane alkylation[J].Industrial&Engineering Chemistry Research, 2016, 55 (30) :8271-8280.

    [12]ZHENG W, WANG H, XIE W, et al.Understanding interfacial behaviors of isobutane alkylation with C4 olefin catalyzed by sulfuric acid or ionic liquids[J].AIChE Journal, 2018, 64 (3) :950-960.

    [13]LIU Y, WANG L, LI R, et al.Reaction mechanism of ionic liquid catalyzed alkylation:alkylation of 2-butene with deuterated isobutene[J].Journal of Molecular Catalysis A:Chemical, 2016, 421:29-36.

    [14]ZHENG W, XIE W, SUN W, et al.Modeling of the interfacial behaviors for the isobutane alkylation with C4 olefin using ionic liquid as catalyst[J].Chemical Engineering Science, 2017, 166:42-52.

    [15]LI K, ECKERT R E, ALBRIGHT L F.Alkylation of isobutane with light olefins using sulfuric acid.Operating variables affecting both chemical and physical phenomena[J].Industrial&Engineering Chemistry Process Design and Development, 1970, 9 (3) :441-446.

    [16]LI K, ECKERT R E, ALBRIGHT L F.Alkylation of isobutane with light olefins using sulfuric acid.Operating variables affecting physical phenomena only[J].Industrial&Engineering Chemistry Process Design and Development, 1970, 9 (3) :434-440.

    [17]SPROW F B.Role of interfacial area in sulfuric acid alkylation[J].Industrial&Engineering Chemistry Process Design and Development, 1969, 8 (2) :254-257.

    [18]LU J R, THOMAS R K, PENFOLD J.Surfactant layers at the air/water interface:structure and composition[J].Advances in Colloid and Interface Science, 2000, 84 (1/2/3) :143-304.

    [19]PATEL H A, NAUMAN E B, GARDE S.Molecular structure and hydrophobic solvation thermodynamics at an octane-water interface[J].The Journal of Chemical Physics, 2003, 119 (17) :9199-9206.

    [20]BHARGAVA B, BALASUBRAMANIAN S.Layering at an ionic liquid-vapor interface:a molecular dynamics simulation study of[bmim][PF6][J].Journal of the American Chemical Society, 2006, 128 (31) :10073-10078.

    [21]LYNDEN-BELL R M, DEL POPOLO M G, YOUNGS T G, et al.Simulations of ionic liquids, solutions, and surfaces[J].Acc.Chem.Res., 2007, 40:1138-1145.

    [22]SANTOS C S, BALDELLI S.Gas-liquid interface of roomtemperature ionic liquids[J].Chemical Society Reviews, 2010, 39 (6) :2136-2145.

    [23]VAN DER SPOEL D, LINDAHL E, HESS B, et al.GROMACS:fast, flexible, and free[J].Journal of Computational Chemistry, 2005, 26 (16) :1701-1718.

    [24]JORGENSEN W L, MAXWELL D S, TIRADO-RIVES J.Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J].Journal of the American Chemical Society, 1996, 118 (45) :11225-11236.

    [25]CANONGIA LOPES J N, DESCHAMPS J, PADUA A A H.Modeling ionic liquids using a systematic all-atom force field[J].The Journal of Physical Chemistry B, 2004, 108 (6) :2038-2047.

    [26]CANONGIA LOPES J N, PADUA A A H.Molecular force field for ionic liquids composed of triflate or bistriflylimide anions[J].The Journal of Physical Chemistry B, 2004, 108 (43) :16893-16898.

    [27]CANONGIA LOPES J N, PADUA A A H.Molecular force field for ionic liquids (III) :Imidazolium, pyridinium, and phosphonium cations;chloride, bromide, and dicyanamide anions[J].The Journal of Physical Chemistry B, 2006, 110 (39) :19586-19592.

    [28]CANONGIA LOPES J N, PADUA A A H, SHIMIZU K.Molecular force field for ionic liquids (Ⅳ) :Trialkylimidazolium and alkoxycarbonyl-imidazolium cations;alkylsulfonate and alkylsulfate anions[J].The Journal of Physical Chemistry B, 2008, 112 (16) :5039-5046.

    [29]KODDERMANN T, PASCHEK D, LUDWIG R.Molecular dynamic simulations of ionic liquids:a reliable description of structure, thermodynamics and dynamics[J].ChemPhysChem, 2007, 8 (17) :2464-2470.

    [30]CHAUMONT A, SCHURHAMMER R, WIPFF G.Aqueous interfaces with hydrophobic room-temperature ionic liquids:a molecular dynamics study[J].The Journal of Physical Chemistry B, 2005, 109 (40) :18964-18973.

    [31]COLMENARES P J, LOPEZ F, OLIVARES-RIVAS W.Molecular dynamics and analytical Langevin equation approach for the selfdiffusion constant of an anisotropic fluid[J].Physical Review E, 2009, 80 (6) :061123.

    [32]HU Y F, LV W J, ZHAO S, et al.Effect of surfactant SDS on DMSOtransport across water/hexane interface by molecular dynamics simulation[J].Chemical Engineering Science, 2015, 134:813-822.

    [33]SHAN W, YANG Q, SU B, et al.Proton microenvironment and interfacial structure of sulfonic-acid-functionalized ionic liquids[J].The Journal of Physical Chemistry C, 2015, 119 (35) :20379-20388.

    [34]HU Y F, LV W J, SHANG Y Z, et al.DMSO transport across water/hexane interface by molecular dynamics simulation[J].Industrial&Engineering Chemistry Research, 2013, 52 (19) :6550-6558.

    [35]LAW G, WATSON P R.Surface orientation in ionic liquids[J].Chemical Physics Letters, 2001, 345 (1/2) :1-4.

    [36]FITCHETT B D, ROLLINS J B, CONBOY J C.Interfacial tension and electrocapillary measurements of the room temperature ionic liquid/aqueous interface[J].Langmuir, 2005, 21 (26) :12179-12186.

    [37]BALTAZAR Q Q, CHANDAWALLA J, SAWYER K, et al.Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 302 (1/2/3) :150-156.

    [38]LISAL M, POSEL Z, IZAK P.Air-liquid interfaces of imidazoliumbased[TF2N-]ionic liquids:insight from molecular dynamics simulations[J].Physical Chemistry Chemical Physics, 2012, 14 (15) :5164-5177.

    [39]LLOTD E.Handbook of Applied Mathematics:Vol.2:Probability[J].John Wiley&Sons, Ltd., 1980:382-385.

    [40]LINDSEY C P, PATTERSON G D.Detailed comparison of the Williams-Watts and Cole-Davidson functions[J].The Journal of Chemical Physics, 1980, 73 (7) :3348-3357.

This Article

ISSN:0438-1157

CN: 11-1946/TQ

Vol 69, No. 11, Pages 4832-4839+4490

November 2018

Downloads:0

Share
Article Outline

知识点

摘要

  • 引言
  • 1 模拟方法
  • 2 结果分析和讨论
  • 3 结论
  • 符号说明
  • 参考文献