催化基底表面亲水改性对氢气催化氧化效率影响的密度泛函研究

肖钧尹1 喻啸晨1 唐伟强1 陶佳波1 赵双良1 刘洪来2

(1.化学工程联合国家重点实验室华东理工大学化工学院, 上海 200237)
(2.化学工程联合国家重点实验室华东理工大学化学与分子工程学院, 上海 200237)

【摘要】催化剂表面亲疏水性改性是一种常见的调控手段, 其对催化剂催化活性、选择性和稳定性有着重要的影响。以氢气催化氧化转化为水为研究对象, 从分子水平出发, 通过多尺度密度泛函理论 (DFT) 计算了催化剂在不同程度的表面亲水改性后对水和氢气的吸附作用, 并研究了吸附对于反应效率的影响。结果表明, 随着表面亲水性的增强, 催化剂表面对水吸附越来越多, 而受体积排斥效应影响, 氢气的吸附量越来越少。而对于同一催化剂表面, 增大水分子的均相密度量可促进氢气在表面的吸附。该理论结果不仅很好地解释了催化剂表面亲水性对于催化活性的影响, 且为表界面反应的效率调控与强化提供了思路。

【关键词】 亲水性; 密度泛函; 吸附; 表面反应;

【DOI】

【基金资助】 霍英东教育基金会高等院校青年教师基金项目 (151069) 霍英东教育基金会高等院校青年教师基金项目 (151069)

Download this article

    References

    [1]PENG Y H, WANG L B, LUO Q Q, et al.Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol[J].Chem, 2018, 4 (3) :613-625.

    [2]GOUNDER R.Hydrophobic microporous and mesoporous oxides as bronsted and lewis acid catalysts for biomass conversion in liquid water[J].Catalysis Science&Technology, 2014, 4:2877-2886.

    [3]CANIVET J, AGUADO S, DANIEL C, et al.Engineering the environment of a catalytic metal-organic framework by postsynthetic hydrophobization[J].Chemcatchem., 2011, 3 (4) :675-678.

    [4]SHI J, WANG Y D, YANG W M, et al.Recent advances of pore system construction in zeolite-catalyzed chemical industry processes[J].Chemical Society Reviews, 2015, 44 (24) :8877-903.

    [5]YANG F, WANG B B, ZHOU S J, et al.Micropore-enriched CuO-based silica catalyst directly prepared by anionic template-induced method and its boosting catalytic activity in olefins epoxidation[J].Microporous&Mesoporous Materials, 2017, 246:215-224.

    [6]RYBKA J, H LTZEL A, MELNIKOV S M, et al.A new view on surface diffusion from molecular dynamics simulations of solute mobility at chromatographic interfaces[J].Fluid Phase Equilibria, 2016, 76 (9) :4364-4369.

    [7]YU W, TAO J B, YU X H, et al.A microreactor with superhydrophobic Pt-Al2O3 catalyst coating concerning oxidation of hydrogen off-gas from fuel cell[J].Applied Energy, 2017, 185:1233-1244.

    [8]OMOTA F, DIMIAN A C, BLIEK A.Partially hydrophobized silica supported Pd catalyst for hydrogenation reactions in aqueous media[J].Applied Catalysis A:General, 2005, 294 (2) :121-130.

    [9]HUANG G, YANG Q H, XU Q, et al.Polydimethylsiloxane coating for a palladium/MOF composite:highly improved catalytic performance by surface hydrophobization[J].Angewandte Chemie, 2016, 128 (26) :7505-7509.

    [10]YAMASHITA H, KAWASAKI S, YUAN S, et al.Efficient adsorption and photocatalytic degradation of organic pollutants diluted in water using the fluoride-modified hydrophobic titanium oxide photocatalysts:Ti-containing beta zeolite and TiO2 loaded on HMSmesoporous silica[J].Catalysis Today, 2007, 126 (3) :375-381.

    [11]SILVESTRE-ALBERO J, DOMINE M E, JORD J L, et al.Spectroscopic, calorimetric, and catalytic evidences of hydrophobicity on Ti-MCM-41 silylated materials for olefin epoxidations[J].Applied Catalysis A:General, 2015, 507:14-25.

    [12]LIU F J, KONG W P, QI C Z, et al.Design and synthesis of mesoporous polymer-based solid acid catalysts with excellent hydrophobicity and extraordinary catalytic activity[J].ACS Catalysis, 2012, 2 (4) :565-572.

    [13]NAKATSUKA K, MORI K, OKADA S, et al.Hydrophobic modification of Pd/SiO2@single-site mesoporous silicas by triethoxyfluorosilane:enhanced catalytic activity and selectivity for one-pot oxidation[J].Chemistry, 2014, 20 (27) :8348-8354.

    [14]CAO S L, CHEN G H, HU X J, et al.Catalytic wet air oxidation of wastewater containing ammonia and phenol over activated carbon supported Pt catalysts[J].Catalysis Today, 2003, 88 (1/2) :37-47.

    [15]CHOI W, KWON S, SHIN H D.Combustion characteristics of hydrogen-air premixed gas in a sub-millimeter scale catalytic combustor[J].International Journal of Hydrogen Energy, 2008, 33 (9) :2400-2408.

    [16]CHUANG K T, QUAIATTINI R J, THATCHER D R P, et al.Development of a wetproofed catalyst recombiner for removal ofairborne tritium[J].Applied Catalysis, 1987, 30 (2) :215-224.

    [17]LIU J, WANG C L, GUO P, et al.Linear relationship between water wetting behavior and microscopic interactions of super-hydrophilic surfaces[J].Journal of Chemical Physics, 2013, 139 (23) :4703-1-4703-8.

    [18]LAIDLER K J.A glossary of terms used in chemical kinetics, including reaction dynamics (IUPAC Recommendations 1996) [J].Pure&Applied Chemistry, 1996, 68 (1) :149-192.

    [19]TRAUTZ M.Das gesetz der reaktionsgeschwindigkeit und der gleichgewichte in gasen.bestätigung der additivität von Cv-3/2R.neue bestimmung der integrationskonstanten und der moleküldurchmesser[J].Zeitschrift Für Anorganische Und Allgemeine Chemie, 1916, 96 (1) :1-28.

    [20]HOHENBERG P, KOHN W.Inhomogeneous electron gas[J].Physical Review, 1964, 136 (3B) :B864-B871.

    [21]CURTIN W A, ASHCROFT N W.Weighted-density-functional theory of inhomogeneous liquids and the freezing transition[J].Physical Review A, 1985, 32 (5) :2909-2919.

    [22]ROSENFELD Y.Free-energy model for the inhomogeneous hardsphere fluid mixture and density-functional theory of freezing[J].Physical Review Letters, 1989, 63 (9) :980-983.

    [23]YU Y X, WU J Z.A fundamental-measure theory for inhomogeneous associating fluids[J].Journal of Chemical Physics, 2002, 116 (16) :7094-7103.

    [24]YU Y X, WU J Z.Structures of hard-sphere fluids from a modified fundamental-measure theory[J].Journal of Chemical Physics, 2002, 117 (22) :10156-10164.

    [25]TANG Y P.First-order mean spherical approximation for inhomogeneous fluids[J].Journal of Chemical Physics, 2004, 121 (21) :10605-10610.

    [26]ZHAO S L, LIU Y, CHEN X Q, et al.Unified framework of multiscale density functional theories and its recent applications[J].Advances in Chemical Engineering, 2015, 47:1-83.

    [27]ZHAO S L, RAMIREZ R, VUILLEUMIER R, et al.Molecular density functional theory of solvation:from polar solvents to water[J].Journal of Chemical Physics, 2011, 134 (19) :4102-1-4102-13.

    [28]GENDRE L, RAMIREZ R, BORGIS D.Classical density functional theory of solvation in molecular solvents:Angular grid implementation[J].Chemical Physics Letters, 2009, 474 (4) :366-370.

    [29]YU X C, ZHANG J, ZHAO S L, et al.An investigation into the effect of gas adsorption on safety valve set pressure variations[J].Chemical Engineering Science, 2018, 188:170-178.

    [30]STEELE W A.The physical interaction of gases with crystalline solids (Ⅰ) :Gas-solid energies and properties of isolated adsorbed atoms[J].Surface Science, 1973, 36 (1) :317-352.

    [31]DUIN A C T V, DASGUPTA S, LORANT F, et al.ReaxFF:a reactive force field for hydrocarbons[J].Journal of Physical Chemistry A, 2001, 105 (41) :9396-9409.

    [32]CHENOWETH K, DUIN A C T V, GODDARD W A.ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J].Journal of Physical Chemistry A, 2008, 112 (5) :1040-1053.

    [33]FANTAUZZI D, MUELLER J E, SABO L, et al.Surface buckling and subsurface oxygen:atomistic insights into the surface oxidation of Pt (111) [J].ChemPhysChem, 2015, 16 (13) :2797-2802.

    [34]FANTAUZZI D, BANDLOW J, SABO L, et al.Development of a ReaxFF potential for Pt-O systems describing the energetics and dynamics of Pt-oxide formation[J].Phys.Chem.Chem.Phys., 2014, 16:23118-23133.

    [35]MIACHON S, SYAKAEV V V, RAKHMATULLIN A, et al.Higher gas solubility in nanoliquids?[J].ChemPhysChem, 2010, 9 (1) :78-82.

    [36]RAKOTOVAO V, AMMAR R, MIACHON S, et al.Influence of the mesoconfining solid on gas oversolubility in nanoliquids[J].Chemical Physics Letters, 2010, 485 (4) :299-303.

    [37]RATAJSKA-GADOMSKA B, GADOMSKI W.Influence of confinement on solvation of ethanol in water studied by Raman spectroscopy[J].Journal of Chemical Physics, 2010, 133 (23) :1775-5.

    [38]HO L N, CLAUZIER S, SCHUURMAN Y, et al.Gas uptake in solvents confined in mesopores:adsorption versus enhanced solubility[J].Journal of Physical Chemistry Letters, 2013, 4 (14) :2274-2278.

    [39]HO L N, SCHUURMAN Y, FARRUSSENG D, et al.Solubility of gases in water confined in nanoporous materials:ZSM-5, MCM-41, and MIL-100[J].Journal of Physical Chemistry C, 2015, 119 (37) :21547-21554.

This Article

ISSN:0438-1157

CN: 11-1946/TQ

Vol 69, No. 11, Pages 4683-4692

November 2018

Downloads:0

Share
Article Outline

摘要

  • 引言
  • 1 计算方法
  • 2 结果与讨论
  • 3 结论
  • 符号说明
  • 参考文献