多孔陶瓷膜用于碳量子点的分离与纯化

陈奕山1 蔡逸丰1 张铭1 薛凡1 顾天宇1 陈献富1 邱鸣慧1 范益群1

(1.南京工业大学化工学院材料化学工程国家重点实验室, 江苏南京 210009)

【摘要】尺寸分布均一的碳量子点由于其良好的光学特性, 在光电设备、离子检测、纳米传感器、生物成像和催化剂等领域具有广阔的应用前景。采用陶瓷膜“超滤-纳滤”双膜法, 对微波合成的碳量子点进行分离和纯化。研究了pH对碳量子点料液荧光强度和粒径分布的影响。在pH=3时, 碳量子点分散较好, 荧光强度较高。陶瓷超滤膜可以有效截留碳量子点料液中的大颗粒杂质, 渗透侧的碳量子点平均粒径约为2 nm, 分散良好, 无团聚现象。陶瓷纳滤膜对碳量子点具有良好的截留性能, 在浓缩和水洗过程中可以进一步去除料液中的小分子杂质。经双膜法处理后, 发射光谱由多峰分布变为单峰分布, 且峰宽变窄, 碳量子点的发光纯度得到了明显提高。

【关键词】 膜; 纳滤; 超滤; 纳米颗粒; 碳量子点; 纯化;

【DOI】

【基金资助】 国家自然科学基金项目 (91534108, 21506093, 21706115) 国家自然科学基金项目 (91534108, 21506093, 21706115) 国家高技术研究发展计划项目 (2012AA03A606) 国家高技术研究发展计划项目 (2012AA03A606) 江苏高校优势学科建设工程项目 (PAPD) 江苏高校优势学科建设工程项目 (PAPD) 江苏省“六大人才高峰”项目 (2012JNHB016) 江苏省“六大人才高峰”项目 (2012JNHB016)

Download this article

    References

    [1]YANG Y H, CUI J H, ZHENG M T, et al.One-step synthesis of aminofunctionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J].Chemical Communications, 2012, 48 (3) :380-382.

    [2]ZHANG X, WANG F, HUANG H, et al.Carbon quantum dot sensitized TiO-nanotube arrays for photoelectrochemical hydrogen generation under visible light[J].Nanoscale, 2013, 5 (6) :2274-2278.

    [3]ZHENG L Y, CHI Y W, DONG Y Q, et al.Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite[J].Journal of the American Chemical Society, 2009, 131 (13) :4564-4565.

    [4]ZHU S J, MENG Q N, WANG L, et al.Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J].Angewandte Chemie, 2013, 52 (14) :3953-3957.

    [5]YU C M, LI X Z, ZENG F, et al.Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells[J].Chemical Communications, 2013, 49 (4) :403-405.

    [6]HU C Q, ZHANG F H.Preparation and analysis of high color rendering index white LED[J].Journal of Functional Materials, 2013, 44 (3) :432-434+441.

    [7]CAO L, WANG X, MEZIANI M J, et al.Carbon dots for multiphoton bioimaging[J].Journal of the American Chemical Society, 2007, 129 (37) :11318-11319.

    [8]WANG M, JIAO Y, CHENG C S, et al.Nitrogen-doped carbon quantum dots as a fluorescence probe combined with magnetic solidphase extraction purification for analysis of folic acid in human serum[J].Analytical&Bioanalytical Chemistry, 2017, 409 (30) :7063-7075.

    [9]SARKAR S, BANERJEE D, GHORAI U K, et al.Size dependent photoluminescence property of hydrothermally synthesized crystalline carbon quantum dots[J].Journal of Luminescence, 2016, 178:314-323.

    [10]WANG S S, MI W Q, ZHU H, et al.Study on the fluorescence properties of carbon dots prepared by one step microwave method[J].Spectroscopy and Spectral Analysis, 2012, 32 (10) :2710-2713.

    [11]ZHANG J, JIANG Y L, CHENG Y, et al.Microwave synthesis of glycerol carbon quantum dots and its application in Fe3+probe[J].Chemical Journal of Chinese Universities, 2016, 37 (1) :54-58.

    [12]ZHOU L, LIN Y H, HUANG Z Z, et al.Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+and biothiols in complex matrices[J].Chemical Communications, 2012, 48 (8) :1147-1149.

    [13]LIU J M, LIN L P, WANG X X, et al.Highly selective and sensitive detection of Cu2+with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe[J].Analyst, 2012, 137 (11) :2637-2642.

    [14]BARMAN S, SADHUKHAN M.Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media[J].Journal of Materials Chemistry, 2012, 22 (41) :21832-21837.

    [15]WANG L, CHEN X, LU Y L, et al.Carbon quantum dots displaying dual-wavelength photoluminescence and electrochemiluminescence prepared by high-energy ball milling[J].Carbon, 2015, 94:472-478.

    [16]CHEN G X, WU S L, HUI L W, et al.Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes[J].Scientific Reports, 2016, 6:19028.

    [17]LIM S Y, SHEN W, GAO Z Q.Carbon quantum dots and their applications[J].Chemical Society Reviews, 2015, 44 (1) :362-381.

    [18]JI Y L, QIAN W J, YU Y W, et al.Recent developments in nanofiltration membranes based on nanomaterials[J].Chinese Journal of Chemical Engineering, 2017, 25 (11) :1639-1652.

    [19]LIU Z, WANG W, JU X J, et al.Graphene-based membranes for molecular and ionic separations in aqueous environments[J].Chinese Journal of Chemical Engineering, 2017, 25 (11) :1598-1605.

    [20]MIAO L, JI J W, WANG H F.Research progress of separation methods for nanoparticles[J].Chinese Journal of Chromatography, 2017, 35 (3) :245-251.

    [21]LE HIR M, WYART Y, GEORGES G, et al.Effect of salinity and nanoparticle polydispersity on UF membrane retention fouling[J].Journal of Membrane Science, 2018, 563:405-418.

    [22]HU Y, HE D W, WANG Y S, et al.An approach to controlling the fluorescence of graphene quantum dots:from surface oxidation to fluorescent mechanism[J].Chinese Physics B, 2014, 23 (12) :1281083.

    [23]ZHAO Y, ZHANG Y, LIU X, et al.Novel carbon quantum dots from egg yolk oil and their haemostatic effects[J].Scientific Reports, 2017, 7:4452.

    [24]CHEN X F, QIU M H, DING H, et al.A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification[J].Nanoscale, 2016, 8 (10) :5696-5705.

    [25]LU Y W, CHEN X F, WEN J J, et al.Fabrication of high performance ZrO2-TiO2 NF membranes via a modified colloidal sol-gel process[J].CIESC Journal, 2015, 66 (9) :3769-3775.

    [26]LU Y W, CHEN T, CHEN X F, et al.Fabrication of TiO2-doped ZrO2nanofiltration membranes by using a modified colloidal sol-gel process and its application in simulative radioactive effluent[J].Journal of Membrance Science, 2016, 509:29-39.

    [27]CHEN X F, ZHANG W, FAN Y Q.A colloidal route to prepare highflux gamma-alumina NF membrane[J].Membrane Science and Technology, 2014, 34 (3) :48-52.

    [28]PUHLFÜRßP, VOIGT A, WEBER R, et al.Microporous TiO2membranes with a cut off<500 Da[J].Journal of Membrane Science, 2000, 174:123-133.

    [29]SHANG W J, WANG X L, YU Y X.Transport phenomena of charged membrane based on charge models[J].Journal of Chemical Industry and Engineering (China) , 2006, 57 (8) :1827-1834.

    [30]CHEN T, ZHANG Y, LU Y W, et al.Application of ZrO2-TiO2composite nanofiltration membrane for treatment of simulative radioactive waste water[J].CIESC Journal, 2016, 67 (12) :5040-5047.

This Article

ISSN:1671-4407

CN: 53-1193/F

Vol 31, No. 12, Pages 27-31

December 2015

Downloads:7

Share
Article Outline

摘要

  • 引言
  • 1 实验
  • 2 结果与讨论
  • 3 结论
  • 参考文献