加强筋结构对离子膜内场分布特性的影响

李佑平1 张丽1 王学军2 许光文1,3 刘国桢4 刘云义1

(1.沈阳化工大学化学工程学院, 辽宁沈阳 110142)
(2.含氟功能膜材料国家重点实验室, 山东淄博 256401)
(3.中国科学院过程工程研究所多相复杂系统国家重点实验室, 北京 100190)
(4.蓝星沈阳轻工机械设计研究所, 辽宁沈阳 110015)

【摘要】为研究加强筋结构对离子膜内场分布特性的影响, 采用多孔介质渗流模型、稀物质传递及二次电流分布模型, 对电场条件下含加强筋的离子膜内物质迁移过程进行了数值模拟, 得到了物质在膜内的对流速度、浓度及电流密度分布, 考察了加强筋形状、间距及成网方式对场分布特性的影响。利用拍照法和图像处理技术对电解后膜表面离子浓度进行了测量, 实验结果与模拟结果吻合良好。结果表明, 在加强筋所围成的空隙中心处对流速度最大;越靠近加强筋, 速度越低, 浓度和电流密度越大;采用正交型加强筋, 膜内具有较高的对流速度和电流密度;加强筋间距越大, 电流密度越低, 分布越均匀;采用椭圆形长轴迎流的加强筋时, 膜内具有最高的电流密度, 但其电流密度分布最不均匀。

【关键词】 离子膜; 加强筋; 计算流体力学; 数值模拟;

【DOI】

【基金资助】 含氟功能膜材料国家重点实验室开放课题项目 (DYYJY20170713A) 含氟功能膜材料国家重点实验室开放课题项目 (DYYJY20170713A) 多相复杂系统国家重点实验室开放课题项目 (MPCS2017D11) 多相复杂系统国家重点实验室开放课题项目 (MPCS2017D11) 辽宁省自然科学基金项目 (201602596) 辽宁省自然科学基金项目 (201602596)

Download this article

    References

    [1]BERGENER D.Membrane cells for chlor-alkali electrolysis[J].Journal of Applied Electrochemistry, 1982, 12 (6) :631-644.

    [2]PLETCHER D.Industrial Electrochemistry[M].London:Chapman&Hall, 1990:88-113.

    [3]ROUALDES S, KOURDA N, DURAND J, et al.Plasma-grafted PVDF polymers as anion exchange membranes for the electrotransport of Cr (Ⅵ) [J].Desalination, 2002, 146 (1) :273-278.

    [4]WANG P, TAN K L, KANG E T, et al.Plasma-induced immobilization of poly (ethylene glycol) onto poly (vinylidene fluoride) microporous membrane[J].Journal of Membrane Science, 2002, 195:103-144.

    [5]YING L, KANG E T, NEOH K G.Characterization of membranes prepared from blends of poly (acrylic acid) -graft-poly (vinylidene fluoride) with poly (N-isopropylacrylamide) and their temperature and pH-sensitive microfiltration[J].Journal of Membrane Science, 2003, 224:93-106.

    [6]WIJMANS J, CHAO P.Influence of the porous support on diffusion in composite membranes[J].Journal of Membrane Science, 2015, 494:78-85.

    [7]HOSSEINI S M, JEDDI F, NEMATI M, et al.Electrodialysis heterogeneous anion exchange membrane modified by PANI/MWCNT composite nanoparticles:preparation, characterization and ionic transport property in desalination[J].Desalination, 2014, 341 (1) :107-114.

    [8]WANG X J, ZHANG D, WANG L, et al.Systimetic innovation research on high performance membranes for chlor-alkali industry[J].China Chlor-Alkali, 2017, (7) :13-17.

    [9]XU T W.Ion exchange membranes:state of their development and perspective[J].Journal of Membrane Science, 2005, 263 (12) :1-29.

    [10]ADAM A G, HOWARD L Y.Factors which affect the permselectivity of Nafion®membranes in chlor-alkali electrolysis I[J].Journal of the Electrochemical Society, 1991, 138 (9) :2690-2697.

    [11]HSU W Y, CIRERKE T D.Ion transport and clustering in Nafion perfluorinated membranes[J].Membranes Sci., 1983, 13 (3) :307-326.

    [12]YE X H, LEVAN M D.Water transport properties of Nafion membranes[J].Journal of Membrane Science, 2003, 221 (1) :163-173.

    [13]ZAWODZINSKI T A, NEEMAN M, SILLERUD L O, et al.Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes[J].Journal of Physical Chemistry, 1991, 95 (15) :6040.

    [14]MA J P.Comprehensive analysis of antistripping property of perfluorinated sulfonic-carboxylic acid ionic membrane[J].China Chlor-Alkali, 2005, (7) :10-12.

    [15]MAURITZ K A, MOORE R B.State of understanding of Nafion[J].Chemical Reviews, 2004, 104 (10) :4535.

    [16]NASEF M M, SAIDI H.Preparation of crosslinked cation exchange membranes by radiation grafting of styrene/divinylbenzene mixtures onto PFA films[J].Journal of Membrane Science, 2003, 216 (1/2) :27-38.

    [17]LIU H, WANG S L, JIANG L H A.The stability of poly (tetrafluoroethylene-co-perfluoropropyl vinyl ether) based anion exchange membranes used for alkaline fuel cell[J].Scientia Sinica, 2011, 41 (12) :1857-1863.

    [18]ZHU H, WANG H J, WANG F, et al.Preparation and properties of PTFE hollow fiber membranes for desalination through vacuum membrane distillation[J].Journal of Membrane Science, 2013, 446 (1) :145-153.

    [19]LAI C L, LIOU R M, CHEN S H, et al.Preparation and characterization of plasma-modified PTFE membrane and its application in direct contact membrane distillation[J].Desalination, 2011, 267 (2) :184-192.

    [20]SEETHARAMAN S, RAGHU S C, MAHABADI K A.Enhancement of current density using effective membranes electrode assemblies for water electrolyser system[J].Journal of Energy Chemistry, 2016, 25 (1) :77-84.

    [21]LIN C H, YANG M C, WEI H J.Amino-silica modified Nafion membrane for vanadium redox flow battery[J].Journal of Power Sources, 2015, 282 (5) :562-571.

    [22]JOHANNINK M, MASILAMANI K, MHAMDI A, et al.Predictive pressure drop models for membrane channels with non-woven and woven spacers[J].Desalination, 2015, 376:41-54.

    [23]DE J V, JÕGI M, WAGTERVELD R M, et al.Confined electroconvective vortices at structured ion exchange membranes[J].Langmuir the ACS Journal of Surfaces&Colloids, 2018, 34 (7) :2455-2463.

    [24]FIMBRES-WEIHS G A, WILEY D E.Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow[J].Journal of Membrane Science, 2007, 306 (1/2) :228-243.

    [25]LI F, MEINDERSMA W, HAAN ABD, et al.Experimental validation of CFD mass transfer simulations in flat channels with non-woven net spacers[J].Journal of Membrane Science, 2004, 232 (1/2) :19-30.

    [26]LI F, MEINDERSMA W, HAAN ABD, et al.Novel spacers for mass transfer enhancement in membrane separations[J].Journal of Membrane Science, 2005, 253 (1/2) :1-12.

    [27]SAEED A, VUTHALURU H B.Impact of feed spacer filament spacing on mass transport and fouling propensities of RO membrane surfaces[J].Chemical Engineering Communications, 2014, 202 (5) :634-646.

    [28]XIE P, MURDOCH L C, LADNER D A.Hydrodynamics of sinusoidal spacers for improved reverse osmosis performance[J].Journal of Membrane Science, 2014, 453 (3) :92-99.

    [29]AMOKRANE M, SADAOUI D, DUDECK M, et al.New spacer designs for the performance improvement of the zigzag spacer configuration in spiral-wound membrane modules[J].Desalination and Water Treatment, 2015, 57 (12) :5266-5274.

    [30]KOUTSOU C, PKARABELAS A J.A novel retentate spacer geometry for improved spiral wound membrane (SWM) module performance[J].Journal of Membrane Science, 2015, 488:129-142.

    [31]RAMON G Z, WONG M C, YHOEK E M V.Transport through composite membrane (Part 1) :Is there an optimal support membrane?[J].Journal of Membrane Science, 2012, 415/416:298-305.

    [32]HE X P, WANG T, LI X, et al.Progress on CFD simulation for mass transfer optimization of membrane process[J].Chemical Industry and Engineering Progress, 2017, 36 (6) :1961-1968.

    [33]CHOI D C, JUNG S Y, WON Y J, et al.Three-dimensional hydraulic modeling of particle deposition on the patterned isopore membrane in crossflow microfiltration[J].Journal of Membrane Science, 2015, 492:156-163.

    [34]ZHAI Y F.Percolation Mechanics[M].Beijing:Petroleum Industry Press, 2016:15-17.

    [35]FÍLA V, BOUZEK K.A mathematical model of multiple ion transport across an ion-selective membrane under current load conditions[J].Journal of Applied Electrochemistry, 2003, 33 (8) :675-684.

    [36]KWAK R, PHAM V S, LIM K M, et al.Shear flow of an electrically charged fluid by ion concentration polarization:scaling laws for electroconvective vortices[J].Physical Review Letters, 2013, 110 (11) :114501.

    [37]HAMANN C H, HAMNETT A, VIELSTICH W.Electrochemistry[M].CHEN Y X, XIA X H, CAI J, trans.2 ed.Beijing:Chemical Industry Press, 2010:143-148.

This Article

ISSN:0438-1157

CN: 11-1946/TQ

Vol 69, No. 10, Pages 4167-4176

October 2018

Downloads:0

Share
Article Outline

摘要

  • 引言
  • 1 实验装置与方法
  • 2 数值模拟
  • 3 模拟方法
  • 4 结果与分析
  • 5 结论
  • 符号说明
  • 参考文献