微小通道内不同润湿性表面流动冷凝传热

袁金斗1 王彦博1 胡涵1 余雄江1 徐进良1

(1.华北电力大学低品位能源多相流与传热北京市重点实验室, 北京 102206)

【摘要】利用丝网烧结和聚四氟乙烯溶液 (Teflon) 浸渍法, 在铜表面上制备了亲疏水匹配的结构, 即在疏水四氟涂层上有阵列排布的椭圆亲水点, 仅有四氟涂层的全疏水表面和不作修饰的全亲水铜表面作为对照, 考察了以这三种表面为底部换热区域的矩形微小通道 (水力直径1.5 mm) 的换热特性和流动特性。实验的通道内蒸汽质量流速为10~60 kg·m-2·s-1, 干度为0.3~1, 亲疏水匹配表面与亲水表面相比, 蒸汽冷凝传热系数 (HTC) 最高增加了454.6%, 与全疏水表面相比, 传热系数最高增加了107.3%, 利用高速相机拍摄可视化照片, 观察了通道内气液两相, 尤其是表面液滴成核、聚并、冲刷的周期运动过程, 解释了亲疏水匹配表面强化传热的机理。

【关键词】 凝结; 亲疏水表面; 微小通道; 传热系数;

【DOI】

【基金资助】 国家自然科学基金重点项目 (51436004) 国家自然科学基金重点项目 (51436004) 国家自然科学基金项目 (51676071) 国家自然科学基金项目 (51676071)

Download this article

    References

    [1]SHARMA C S, TIWARI M K, ZIMMERMANN S, et al.Energy efficient hotspot-targeted embedded liquid cooling of electronics[J].Applied Energy, 2015, 138:414-422.

    [2]TUCKERMAN D B, PEASE R F W.High-performance heat sinking for VLSI[J].IEEE Electron Device Letters, 1981, 2 (5) :126-129.

    [3]CHO H J, PRESTON D J, ZHU Y, et al.Nanoengineered materials for liquid-vapour phase-change heat transfer[J].Nature Reviews Materials, 2016, 2 (2) :16092.

    [4]FLETCHER N H.Size effect in heterogeneous nucleation[J].Journal of Chemical Physics, 1958, 29 (3) :572-576.

    [5]KIM S, KIM K J.Dropwise condensation modeling suitable for superhydrophobic surfaces[J].Journal of Heat Transfer, 2011, 133 (8) :081502.

    [6]DANIEL A, CHRISTOPHE F, BETZ A R, et al.Surface engineering for phase change heat transfer:a review[J].MRS Energy&Sustainability-A Review Journal, 2014, 1:1-40.

    [7]MILJKOVIC N, ENRIGHT R, WANG E N.Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces[J].ACSNano, 2012, 6 (2) :1776-1785.

    [8]NAM Y, KIM H, SHIN S.Energy and hydrodynamic analyses of coalescence-induced jumping droplets[J].Applied Physics Letters, 2013, 103 (16) :161601.

    [9]PARKER A R, LAWRENCE C R.Water capture by a desert beetle[J].Nature, 2001, 414:33-34.

    [10]HOU Y, YU M, CHEN X, et al.Recurrent filmwise and dropwise condensation on a beetle mimetic surface[J].ACS Nano, 2015, 9 (1) :71-81.

    [11]BOREYKO J B, HANSEN R R, MURPHY K R, et al.Controlling condensation and frost growth with chemical micropatterns[J].Scientific Reports, 2016, 6:19131.

    [12]XIE J, XU J, HE X, et al.Large scale generation of micro-droplet array by vapor condensation on mesh screen piece[J].Scientific Reports, 2017, 7:39932.

    [13]WANG Y, ZHANG L, WU J, et al.A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting[J].Journal of Materials Chemistry A, 2015, 3 (37) :18963-18969.

    [14]CHATTERJEE A, DERBY M M, PELES Y, et al.Condensation heat transfer on patterned surfaces[J].International Journal of Heat&Mass Transfer, 2013, 66 (66) :889-897.

    [15]CHATTERJEE A, DERBY M M, PELES Y, et al.Enhancement of condensation heat transfer with patterned surfaces[J].International Journal of Heat&Mass Transfer, 2014, 71 (4) :675-681.

    [16]CHEN X, DERBY M M.Combined visualization and heat transfer measurements for steam flow condensation in hydrophilic and hydrophobic mini-gaps[J].Journal of Heat Transfer, 2016, 138 (9) :091503.

    [17]FANG C, STEINBRENNER J E, WANG F M, et al.Impact of wall hydrophobicity on condensation flow and heat transfer in silicon microchannels[J].Journal of Micromechanics&Microengineering, 2010, 20 (4) :045018.

    [18]DERBY M M, CHATTERJEE A, PELES Y, et al.Flow condensation heat transfer enhancement in a mini-channel with hydrophobic and hydrophilic patterns[J].International Journal of Heat&Mass Transfer, 2014, 68 (1) :151-160.

    [19]KUMAGAI S, TANAKA S, KATSUDA H, et al.On the enhancement of filmwise condensation heat transfer by means of the coexistence with dropwise condensation sections[J].Experimental Heat Transfer, 2007, 4 (1) 71-82.

    [20]PENG B, MA X, ZHONG L, et al.Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces[J].International Journal of Heat&Mass Transfer, 2015, 83:27-38.

    [21]GARIMELLA M M, KOPPU S, KADLASKAR S S, et al.Difference in growth and coalescing patterns of droplets on bi-philic surfaces with varying spatial distribution[J].Journal of Colloid&Interface Science, 2017, 505:1065-1073.

    [22]BAI H, WANG L, JU J, et al.Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns[J].Advanced Materials, 2014, 26 (29) :5025-5030.

    [23]MACNER A M, DANIEL S, STEEN P H.Condensation on surface energy gradient shifts drop size distribution toward small drops[J].Langmuir the ACS Journal of Surfaces&Colloids, 2014, 30 (7) :1788-1798.

    [24]GHOSH A, BEAINI S, ZHANG J, et al.Enhancing dropwise condensation through bioinspired wettability patterning[J].Langmuir the ACS Journal of Surfaces&Colloids, 2014, 30 (43) :13103-13115.

    [25]HOLMAN J P, GAJDA W J.Experimental Methods for Engineers[M].4th ed.New York:McGraw-Hill, 1994

    [26]KIM S M, MUDAWAR I.Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow[J].International Journal of Heat&Mass Transfer, 2013, 56 (1/2) :238-250.

    [27]CAREY V P.Liquid-vapor Phase-change Phenomena[M].2nd ed.CRC Press, 2007:169-172.

    [28]MA X H, LAN Z, WANG K, et al.Dancing droplet:interface phenomena and process regulation[J].CIESC Journal, 2018, 69 (1) :9-43.

    [29]WANG H, LIAO Q, ZHU X, et al.Mechanism of liquid droplet movement on surface with gradient surface energy[J].Journal of Chemical Industry and Engineering (China) , 2007, 58 (9) :2313-2320.

    [30]XIE J, LIU Q, HE X T, et al.Dimensionless critical criterion for the sliding of droplet on tilt surface in shear flow[J].Journal of Engineering Thermophysics, 2017, 38 (5) :1033-1038.

This Article

ISSN:0438-1157

CN: 11-1946/TQ

Vol 69, No. 10, Pages 4156-4166+4496

October 2018

Downloads:0

Share
Article Outline

摘要

  • 引言
  • 1 表面制备和表征
  • 2 通道封装和实验系统
  • 3 实验结果与讨论
  • 4 亲疏水匹配通道强化传热机理
  • 5 结论
  • 符号说明
  • 参考文献