石墨烯基铁氧化物对水体中草甘膦的动态吸附性能及模型

李亚娟1 赵传起1 杨悦锁1,2 王园园1 宋晓明1

(1.沈阳大学环境学院, 辽宁沈阳 110044)
(2.吉林大学环境与资源学院, 吉林长春 130021)

【摘要】采用热沉积法制备出石墨烯/四氧化三铁 (RGO-Fe3O4) 复合材料, 针对草甘膦 (GLY) 污染水体, 开展该吸附材料对GLY的动态柱实验, 通过考察污染物浓度、pH、流速、柱高等因素对穿透过程的影响, 研究复合材料对GLY的动态吸附性能, 并结合扫描电子显微镜 (SEM-EDS) 、X射线光电子能谱仪 (XPS) 、全自动比表面和孔隙分析仪 (BET) 等表征手段和Thomas、Yoon-Nelson和Yan等吸附模型分析吸附机理。实验结果表明:随着柱高增加, 穿透时间延长, 吸附柱对GLY的吸附总量增大;随着GLY初始浓度的升高, 穿透时间缩短, 吸附柱对GLY的吸附总量增大;随着流速和p H的升高, 穿透时间缩短, 吸附柱对GLY的吸附总量减小。此外, Thomas、Yoon-Nelson和Yan模型拟合得到的R2均大于0.9, 且理论单位吸附量均与实际值相差不大, 即3种模型均可较好地描述石墨烯复合材料对GLY的动态吸附过程。本实验的研究对石墨烯材料的推广应用及实际GLY污染水体的修复具有重要意义。

【关键词】 复合材料; 草甘膦污染; 吸附; 穿透曲线; 模型;

【DOI】

【基金资助】 国家自然科学基金项目 (41703120) 国家自然科学基金项目 (41703120) 辽宁省创新团队 (LT201507) 辽宁省创新团队 (LT201507) 辽宁省博士启动基金 (201601214) 辽宁省博士启动基金 (201601214)

Download this article

    References

    [1]YAMAGUCHI N U, BERGAMASCO R, HAMOUDI S.Magnetic Mn Fe2O4-graphene hybrid composite for efficient removal of glyphosate from water[J].Chemical Engineering Journal, 2016, 295:391-402.

    [2]YANG X, WANG F, BENTO C P, et al.Short-term transport of glyphosate with erosion in Chinese loess soil—a flume experiment[J].Science of the Total Environment, 2015, s 512/513:406-414.

    [3]HU Y S, ZHAO Y Q, SOROHAN B.Removal of glyphosate from aqueous environment by adsorption using water industrial residual[J].Desalination, 2011, 271 (1/2/3) :150-156.

    [4]GUYTON K Z, LOOMIS D, GROSSE Y, et al.Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate[J].Lancet Oncology, 2015, 16 (5) :490.

    [5]PAGANELLI A, GNAO V, ACOSTA H, et al.Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling[J].Chemical Research in Toxicology, 2010, 23 (10) :1586-1595.

    [6]SVIRIDOV A V, SHUSHKOVA T V, ERMAKOVA I T, et al.Microbial degradation of glyphosate herbicides (review) [J].Applied Biochemistry&Microbiology, 2015, 51 (2) :188-195.

    [7]RIVOIRA L, APPENDINI M, FIORILLI S, et al.Functionalized iron oxide/SBA-15 sorbent:investigation of adsorption performance towards glyphosate herbicide[J].Environmental Science&Pollution Research, 2016, 23 (21) :1-10.

    [8]XIE M, LIU Z, XU Y.Removal of glyphosate in neutralization liquor from the glycine-dimethylphosphit process by nanofiltration[J].Journal of Hazardous Materials, 2010, 181 (1/2/3) :975-980.

    [9]CHEN G M.Study on the treatment of organophosphorus pesticide wastewater by UV/ferrate[D].Wuhan:Huazhong University of Science and Technology, 2012.

    [10]YU F, LI Y, HAN S, et al.Adsorptive removal of antibiotics from aqueous solution using carbon materials[J].Chemosphere, 2016, 153:365-385.

    [11]MILOJEVIĆ-RAKIĆM, JANOŠEVIĆA, KRSTIĆJ, et al.Polyaniline and its composites with zeolite ZSM-5 for efficient removal of glyphosate from aqueous solution[J].Microporous&Mesoporous Materials, 2013, 180 (11) :141-155.

    [12]GE L, WANG J, CHEN H, et al.Adsorption of glyphosate from aqueous solutions by hydrous ferric oxide preloaded into activated carbon[J].Chinese Journal of Environmental Engineering, 2009, 3 (10) :1745-1748.

    [13]MAYAKKADUWA S S, KUMARATHILAKA P, HERATH I, et al.Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal[J].Chemosphere, 2016, 144:2516-2521.

    [14]XIE M, XU Y H.Glyphosate adsorption by ferric supported active carbon[J].China Environmental Science, 2011, 31 (2) :239-244.

    [15]KHAN A, WANG J, LI J, et al.The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media:a review[J].Environmental Science and Pollution Research International, 2017, 24 (9) :1-21.

    [16]SUO F Y, XIE G Y, ZHANG J.A carbonised sieve-like corn straw cellulose-graphene oxide composite for organophosphorus pesticide removal[J].RSC Advances, 2018, 8:7735-7743.

    [17]CUI Z H.Fixed-bed column study for the removal of arsenate from aqueous solutions using sand coated by magnetic graphene oxide adsorbent[D].Changsha:Hunan University, 2014.

    [18]HU Q, LI Y L, PAN H Y, et al.Dynamic adsorption of aniline in water on modified sawdust[J].Chinese Journal of Environmental Engineering, 2016, 10 (9) :4663-4667.

    [19]FENG Y M.Study on adsorption removal of toxic intermediates produced in electro-oxidation by carbonaceous materials[D].Zhengzhou:North China University of Water Resources and Electric Power, 2016.

    [20]LI Z Q, RU L Y, BAI C G, et al.Characterization study on specific surface and absorption of Ca Ti O3[J].Journal of Functional Materials, 2011, 42 (3) :577-579.

    [21]ZHOU P Y.Study on preparation and adsorption properties of activated carbon from the Tung Nutshell by H3PO4 or KOH activation[D].Fuzhou:Fujian Normal University, 2007.

    [22]ZUBIR N A, ZHANG X, YACOU C, et al.Fenton-like degradation of Acid Orange 7 using graphene oxide-iron oxide nanocomposite[J].Science of Advanced Materials, 2018, 6 (7) :1382-1388.

    [23]CHEN H R.Removal of Cr (Ⅵ) from aqueous solution using aminemodified Si O2[D].Kunming:Kunming University of Science and Technology, 2016.

    [24]MAITI S K, BERA D, CHATTOPADHYAY P, et al.Determination of kinetic parameters in the biosorption of Cr (Ⅵ) on immobilized Bacillus cereus M116 in a continuous packed bed column reactor[J].Applied Biochemistry&Biotechnology, 2009, 159 (2) :488-504.

    [25]SAMUEL J, PULIMI M, PAUL M L, et al.Batch and continuous flow studies of adsorptive removal of Cr (Ⅵ) by adapted bacterial consortia immobilized in alginate beads[J].Bioresource Technology, 2013, 128 (128C) :423-430.

    [26]ZHANG M M.Preparation of walnut shell-based activated carbon and adsorption of malachite green and p-chlorophenol from aqueous solutions[D].Zhengzhou:Zhengzhou University, 2012.

This Article

ISSN:0438-1157

CN: 11-1946/TQ

Vol 69, No. 09, Pages 3944-3953

September 2018

Downloads:0

Share
Article Outline

摘要

  • 引言
  • 1 实验部分
  • 2 结果与讨论
  • 3 结论
  • 符号说明
  • 参考文献