二价铬/钼/镍空配位MOFs的CH4/N2吸附分离研究

贾晓霞1,2 王丽1,2 元宁1,2 杨江峰1,2 李晋平1,2

(1.太原理工大学化学化工学院精细化工研究所, 山西太原 030024)
(2.气体能源高效清洁利用山西省重点实验室, 山西太原 030024)

【摘要】基于金属有机骨架材料中金属空配位对气体的强吸附作用, 利用具有较高活性的二价金属Cr2+/Mo2+/Ni2+与均苯三酸 (H3BTC) 配位合成了HKUST-1 (Cu-BTC) 同构系列材料M-BTC (M=Cr、Mo、Ni) , 并与Cu-BTC对比分析了该类型材料中不同金属空配位对甲烷和氮气的吸附性能。实验结果显示, 此三种材料均具有较好的甲烷选择吸附性, 其中含Ni2+金属空位的Ni-BTC以其尤为突出的甲烷吸附热值而呈现较好的CH4/N2分离潜力;Cr2+空配位虽具有较强活性, 但是对于甲烷的选择性吸附性能却低于含Cu2+空位的Cu-BTC材料。结合吸附选择性IAST计算分析得到此三种含较高活性不饱和金属空配位的MOFs材料对于甲烷选择性吸附作用能顺序为:Ni-BTC>Mo-BTC>Cu-BTC>Cr-BTC。

【关键词】 甲烷; 氮气; 吸附; 吸附剂; 不饱和金属空配位;

【DOI】

【基金资助】 国家自然科学基金项目 (51672186, 21676175) 国家自然科学基金项目 (51672186, 21676175)

Download this article

    References

    [1]HU J L, SUN T J, LIU X W, et al.Adsorption and separation of CH4-N2 with different structural MOFs[J].CIESC Journal, 2015, 66 (9) :3518-3528.

    [2]ZHANG Z M, YANG J F, CHEN Y, et al.Separation of CH4/N2 and CO2/CH4 mixtures in one dimension channel MOFs[J].CIESC Journal, 2015, 66 (9) :3549-3555.

    [3]YANG J F, ZHAO Q, YU Q H, et al.Progress of recovery of coal bed methane and adsorption materials for separation of CH4/N2 by pressure swing adsorption[J].Chemical Industry and Engineering Progress, 2011, 30 (4) :793-801.

    [4]PERRY R H, GREEN D W.Perry’s Chemical Engineers’Handbook[M].New York:Mc Graw-Hill, 1999.

    [5]DAVID C B, JOHN L B, ARASH A.Nitrogen Removal from Natural Gas:PhaseⅡ[M].Washington, DC:U.S.Department of Energy, 1999.

    [6]SIMONE C, CARLOS A G, ALIRIO E R, et al.Separation of CH4/CO2/N2 mixtures by layered pressure swing adsorption for upgrade of natural gas[J].Chem.Eng.Sci., 2006, 61 (12) :3893-3906.

    [7]TAGLIABUE M, FARRUSSENG D, VALENCIA S, et al.Natural gas treating by selective adsorption:material science and chemical engineering interplay[J].Chem.Eng.J., 2009, 155 (3) :553-566.

    [8]LIU K W, GU M, XIAN X F, et al.Research progress in concentration of methane from CH4/N2 by PSA[J].Mod.Chem.Ind., 2007, 27 (12) :15-18.

    [9]EDDAOUDI M, KIM J, ROSI N, et al.Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J].Science, 2002, 295:469-472.

    [10]HWANG Y K, HONG D Y, CHANG J S, et al.Amine grafting on coordinatively unsaturated metal centers of MOFs:consequences for catalysis and metal encapsulation[J].Angew.Chem.Int.Ed., 2008, 47:4144-4148.

    [11]LLEWELLYN P L, BOURRELLY S, SERRE C, et al.High uptakes of CO2 and CH4 in mesoporous metal organic frameworks MIL-100 and MIL-101[J].Langmuir, 2008, 24:7245-7250.

    [12]DIETZEL P D C, BESIKIOTIS V, BLOM R, et al.Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide[J].J.Mater.Chem., 2009, 19:7362-7370.

    [13]YAGHI O M, O’KEEFFE M, OCKWIG N W, et al.Reticular synthesis and the design of new materials[J].Nature, 2003, 423:705-714.

    [14]LI H, EDDAOUDI M, O’KEEFFE M, et al.Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J].Nature, 1999, 402:276-279.

    [15]STOCK N, BISWAS S, et al.Synthesis of metal-organic frameworks (MOFs) :routes to various MOF topologies, morphologies, and composites[J].Chem.Rev., 2012, 112:933-969.

    [16]JANIAK C, VIETH J K, et al.MOFs, MILs and more:concepts, properties and applications for porous coordination networks (PCNs) [J].New J.Chem., 2010, 34:2366-2388.

    [17]YU D, YAZAYDIN A O, LANE J R, et al.A combined experimental and quantum chemical study of CO2 adsorption in the metal-organic framework CPO-27 with different metals[J].Chem.Sci., 2013, 4:3544-3556.

    [18]PENG Y, KRUNGLEVICIUTE V, ERYAZICI I, et al.Methane storage in metal-organic frameworks:current records, surprise findings, and challenges[J].J.Am.Chem.Soc., 2013, 135:11887-11894.

    [19]LI B, WEN H M, WANG H, et al.A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity[J].J.Am.Chem.Soc., 2014, 136:6207-6210.

    [20]HE Y, ZHOU W, YILDIRIM T, et al.A series of metal-organic frameworks with high methane uptake and an empirical equation for predicting methane storage capacity[J].Energy Environ.Sci., 2013, 6:2735-2744.

    [21]MA S, SUN D, SIMMONS J M, et al.Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake[J].J.Am.Chem.Soc., 2008, 130:1012-1016.

    [22]ELSAIDI S K, MOHAMED M H, WOJTAS L, et al.Putting the squeeze on CH4 and CO2 through control over interpenetration in diamondoid nets[J].J.Am.Chem.Soc., 2014, 136:5072-5077.

    [23]ROSI N L, KIM J, EDDAOUDI M, et al.Rod packings and metalorganic frameworks constructed from rod-shaped secondary building units[J].J.Am.Chem.Soc.2005, 127:1504-1518.

    [24]DIETZEL P D C, PANELLA B, HIRSCHER M, et al.Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework[J].Chem.Commun., 2006, (9) :959-961.

    [25]DIETZEL P D C, MORITA Y, BLOM R, et al.An in situ hightemperature single-crystal investigation of a dehydrated metal-organic framework compound and field-induced magnetization of onedimensional metal-oxygen chains[J].Angew.Chem.Int.Ed., 2005, 44:6354-6358.

    [26]ZHOU W, WU H, YILDIRIM T, et al.Enhanced H2 adsorption in isostructural metal-organic frameworks with open metal sites:strong dependence of the binding strength on metal ions[J].J.Am.Chem.Soc., 2008, 130:15268-15269.

    [27]DIETZEL P D C, BLOM R, FJELLVAG H, et al.Base-induced formation of two magnesium metal-organic framework compounds with a bifunctional tetratopic ligand[J].Eur.J.Inorg.Chem., 2008, 23:3624-3632.

    [28]BLOCH E D, MURRAY L J, QUEEN W L, et al.Selective binding of O2 over N2 in a redox-active metal-organic framework with open iron (Ⅱ) coordination sites[J].J.Am.Chem.Soc., 2011, 133:14814-14822.

    [29]VISHNYAKOV A, RAVIKOVITCH P I, NEIMARK A V.Nanopore structure and sorption properties of Cu-BTC metal-organic framework[J].Nano Letters, 2003, 3:713-718.

    [30]MURRAY L J, DINCA M, YANO J, et al.Highly-selective and reversible O2 binding in Cr3 (1, 3, 5-benzenetricarboxylate) 2[J].J.Am.Chem.Soc., 2010, 132:7856-7857.

    [31]MANIAM P, STOCK N, et al.Investigation of porous Ni-based metalorganic frameworks containing paddle-wheel type inorganic building units via high-throughput methods[J].Inorg.Chem., 2011, 50:5085-5097.

    [32]KRAMER M, ULRICH S B, KASKEL S, et al.Synthesis and properties of the metal-organic framework Mo3 (BTC) 2 (TUDMOF-1) [J].J.Mater.Chem., 2006, 16:2245-2248.

    [33]ZHANG Z, ZHANG L, WOJTAS L, et al.Template-directed synthesis of nets based upon octahemioctahedral cages that encapsulate catalytically active metalloporphyrins[J].J.Am.Chem.Soc., 2012, 134:928-933.

    [34]BHUNIA M K, HUGHES J T, FETTINGER J C, et al.Thermochemistry of paddle wheel MOFs:Cu-HKUST-1 and ZnHKUST-1[J].Langmuir, 2013, 29, 8140-8145.

    [35]LI L B, YANG J F, CHEN Y, et al.Separation of CO2/CH4 and CH4/N2mixtures by M/DOBDC:a detailed dynamic comparison with MIL-100 (Cr) and activated carbon[J].Microporous and Mesoporous Materials, 2014, 198:236-246.

    [36]LI J M, YANG J F, LI L B.Separation of CO2/CH4 and CH4/N2mixtures using MOF-5 and Cu3 (BTC) 2[J].Journal of Energy Chemistry, 2014, 23:453-460.

    [37]MARKUS K, ULRICH S, STEFAN K.Synthesis and properties of the metal-organic framework Mo3 (BTC) 2 (TUDMOF-1) [J].J.Mater.Chem., 2006, 16:2245-2248.

    [38]WANG X Q, LI L B, WANG Y.Exploiting the pore size and functionalization effects in Ui O topology structures for the separation of light hydrocarbons[J].Cryst.Eng.Comm., 2017, 19:1729-1737.

This Article

ISSN:0438-1157

CN: 11-1946/TQ

Vol 69, No. 09, Pages 3896-3904+4138

September 2018

Downloads:0

Share
Article Outline

摘要

  • 引言
  • 1 实验材料和方法
  • 2 实验结果与讨论
  • 3 结论
  • 参考文献