Side-by-side Chinese-English

干气密封螺旋槽几何参数优选交互影响

江锦波1 陈源1 赵文静1 李纪云1 彭旭东1

(1.浙江工业大学过程装备及其再制造教育部工程研究中心, 浙江杭州 310014)

【摘要】为解决干气密封(DGS)端面型槽优化中未考虑型槽几何参数之间对目标函数交互影响而导致几何参数优化结果不准确的问题,研究了不同速度条件下DGS螺旋槽中其他几何参数对某一几何参数优选值的交互影响。基于气体润滑理论,建立了螺旋槽DGS的几何模型和数学模型,数值求解获得端面膜压分布和稳态性能参数,定义了综合表征螺旋槽几何结构的特征参数。以气膜刚度最大为优选目标,获得了不同速度条件下DGS螺旋槽中某一几何参数优选值随其他几何参数的变化规律。结果表明:DGS螺旋槽各几何参数两两之间呈现出复杂的交互影响关系,不过总体符合趋向于降低槽内实际通流面积、槽长宽比和槽长深比3个综合参数变化幅值的原则;与单因素优化方法相比,在给定算例参数条件下所提出的考虑几何参数交互影响的优化方法所获得气膜刚度最优值提高11.4%。

【关键词】 干气密封;优化;数值分析;稳定性;交互影响;

【DOI】

【基金资助】 国家自然科学基金项目(51575490,51705458); 浙江省自然科学基金重点项目(LZ15E050002); 浙江省自然科学基金青年基金项目(LQ17E050008,LQ16E050009);

Interaction effect of optimized value of geometric parameters of spiral groove of dry gas seal

JIANG Jinbo1 CHEN Yuan1 ZHAO Wenjing1 LI Jiyun1 PENG Xudong1

(1.Engineering Research Center of Process Equipment and Its Remanufacturing of Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China 310014)

【Abstract】The interaction effects of other geometric parameters on the optimized value of a certain geometric parameters of spiral groove dry gas seal (DGS) in low pressure were analyzed for the purpose of solving the problem of the interaction effects of geometric parameters of hydrodynamic groove on objective function that are ignored in optimization design of hydrodynamic groove of DGS which leads to the inaccuracy of optimized value of geometric parameters. Geometric and mathematical models of spiral groove DGS were set up according to the theory of gas lubrication. The pressure distribution and steady performance were obtained by solving the Reynolds equations by using finite difference method, and several characterized parameters of spiral groove were defined. The change rules of optimized values for the maximum film stiffness of a certain geometric parameter of spiral groove with other geometric parameters in different operation velocity were presented. The results show that complicated interaction effect relationships exist between the geometric parameters of spiral groove DGS, which suit for the three comprehensive design criteria, including decrease of the amplitude changes of real flow area of groove, groove length-width ratio and groove length-depth ratio. The maximum film stiffness obtained by the optimization method of considering the interaction effect of geometric parameters is about 11.4% larger than that obtained by the single factor optimization method in the given example.

【Keywords】 dry gas seal; optimization; numerical analysis; stability; interaction effect;

【DOI】

【Funds】 National Natural Science Foundation of China (51575490, 51705458); Key Program of Zhejiang Provincial Natural Science Foundation (LZ15E050002); Zhejiang Provincial Natural Science Foundation of Zhejiang Province (LQ17E050008, LQ16E050009);

Download this article
    References

    [1] GARDNER J F. Rotary mechanical seal of the gap type: US3499653 [P]. 1968-06-05.

    [2] ZOBENS A. Noncontacting face seal application for sealing gas at 105 psig, 7000 rpm [J]. Lubrication Engineering, 1975, 31 (1): 16–19.

    [3] GABRIEL R P. Fundamental of spiral groove noncontacting face seals [J]. Lubrication Engineering, 1994, 50: 215–224.

    [4] FARIA M T C. An efficient finite element procedure for analysis of high speed spiral groove face seals [J]. ASME Journal of Tribology, 2001, 123 (1): 205–210.

    [5] SAXENA M N. Dry gas seals and support systems: benefits and options [J]. Hydrocarbon Processing, 2003, 82 (11): 37–41.

    [6] LIU Z, LIU Y, LIU X F. Optimization design of main parameters for double spiral grooves face seal [J]. Science in China Series E: Technological Sciences, 2007, 37 (7): 898–903.

    [7] JIANG X W, GU B Q. Characteristics of gas film between spiral groove dry gas seal faces [J]. Journal of Chemical Industry and Engineering (China), 2005, 56 (8): 1419–1425 (in Chinese).

    [8] JIANG J B, PENG X D, LI J Y, et al. A comparative study on the performance of typical types of bionic groove dry gas seal based on bird wing [J]. Journal of Bionic Engineering, 2016, 13 (2): 234–244.

    [9] JIANG J B, PENG X D, BAI S X, et al. Numerical analysis of characteristics of a bionic cluster spiral groove dry gas seal [J]. Journal of Mechanical Engineering, 2015, 51 (15): 20–26 (in Chinese).

    [10] JIANG J B, PENG X D, BAI S X, et al. Performance analysis and selection of a bionic bird wing multi-array spiral groove dry gas seal [J]. Tribology, 2015, 35 (3): 274–281 (in Chinese).

    [11] ZIRKELBACK N. Parametric study of spiral groove gas face seals [J]. Tribology Transactions, 2000, 43 (2): 337–343.

    [12] LIU Y C, SHEN X M, XU W F, et al. Performance comparison and parametric study on spiral groove gas film face seals [J]. Science in China Series E: Technological Sciences, 2004, 47: 29–36.

    [13] BONNEAU D, HUITRIC J, TOURNERIE B. Finite element analysis of grooved gas thrust bearings and grooved gas face seals [J]. ASMEJournal of Tribology, 1993, 115 (3): 348–354.

    [14] GRIGOREV B S, SMIRNOV D B. Calculation of static characteristics of spiral-grooved thrust bearings over a wide compressibility range [J]. Journal of Machinery Manufacture and Reliability, 2013, 42 (3): 236–239.

    [15] SATOMI T, LIN G. Design optimization of spiral grooved thrust air bearing for polygon mirror laser scanners [J]. JSME International Journal Series C: Dynamic Control Robotics Design and Manufacturing, 1993, 36 (3): 393–399.

    [16] HASHIMOTO H, OCHIAI M. Optimization of groove geometric for thrust air bearing to maximize bearing stiffness [J]. ASME Journal of Tribology, 2008, 130 (3): 1–11.

    [17] SHELLEF R A, JOHNSON R P. A bi-directional gas face seal [J]. Tribology Transactions, 1992, 35 (1): 53–58.

    [18] LIPSCHIZE A, BASU P, JOHNSON R P. A bi–directional gas thrust bearing [J]. Tribology Transactions, 1991, 34 (1): 9–16.

    [19] LIU X F, XU C, HUANG W F. Analysis and parametric design of the dynamics of a dry gas seal for extreme operating conditions using a semi-analytical method [J]. Journal of Tsinghua University (Science and Technology), 2014, 54 (2): 223–228 (in Chinese).

    [20] CHEN Y, PENG X D, LI J Y, et al. The influence of structure parameters of spiral groove on dynamic characteristics of dry gas seal [J]. Tribology, 2016, 36 (4): 397–404 (in Chinese).

    [21] ZIRKELBACK N, ANDRES L S. Effect of frequency excitation on force coefficients of spiral groove gas seals [J]. ASME Journal of Tribology, 1999, 121: 853–861.

    [22] ZIRKELBACK N. Parametric study of spiral groove gas face seals [J]. Tribology Transactions, 2000, 43 (2): 337–343.

    [23] PENG X D, ZHANG Y L, BAI S X, et al. Effect of rotational speed and sealing medium pressure on optimization of groove geometric parameters of a T-groove dry gas face seal [J]. CIESC Journal, 2012, 63 (2): 551–559 (in Chinese).

    [24] FENG X Z, PENG X D. Study of stiffness and leakage rate of spiral groove dry gas face seals [J]. Journal of the University of Petroleum (Science and Technology), 2005, 29 (2): 83–85 (in Chinese).

    [25] PENG X D, JIANG J B, BAI S X, et al. Structural parameter optimization of spiral groove dry gas seal under low of medium pressure [J]. CIESC Journal, 2014, 65 (11): 4536–4542 (in Chinese).

    [26] ZHAO Y C, YANG F. Steady-state optimization of a groove texture with different oil film thickness [J]. International Journal of Surface Science and Engineering, 2015, 9 (5): 385–394.

    [27] PENG X D, JIANG J B, BAI S X, et al. Correlational research of bionics design of dry gas face seal groove [J]. Journal of Mechanical Engineering, 2014, 50 (3): 151–157 (in Chinese).

    [28] PENG X D, TAN L L, SHENG S E, et al. Static analysis of a spiralgroove dry gas seal with an inner annular groove [J]. Tribology, 2008, 28 (6): 507–511 (in Chinese).

    [29] PENG X D, HUANG L, BAI S X, et al. Numerical analysis of sealing performance of dry gas seal with goose–grooves [J]. CIESC Journal, 2010, 61 (12): 3193–3199 (in Chinese).

    [30] PENG X D, HUYAN C L, BAI S X, et al. Design of a biomorphic groove dry gas seal based on bird wing outlines [J]. Tribology, 2012, 32 (6): 563–569 (in Chinese).

This Article

ISSN:0438-1157

CN: 11-1946/TQ

Vol 69, No. 04, Pages 1518-1527

April 2018

Downloads:0

Share
Article Outline

Abstract

  • Introduction
  • 1 Analytical model
  • 2 Results and discussion
  • 3 Conclusions
  • Symbol description
  • References