吴厚晓1 陈永伟1 梁俊杰1 石仁凤1 夏启斌1 李忠1

(1.华南理工大学化学与化工学院, 广东广州 510640)

【摘要】应用溶剂热法合成了不同氧化石墨烯(GO)负载量的MOF-505@GO复合材料,分别采用全自动表面积吸附仪、P-XRD、SEM和Raman对材料进行了性能表征,测定了CH4、C2H6和C3H8在MOF-505@GO上的吸附等温线,并进行Langmuir-Freundlich方程拟合,依据IAST理论模型计算了C2H6/CH4和C3H8/CH4二元混合气在MOF-505@5GO上的吸附选择性。研究结果表明,随着GO负载量增大,MOF-505@GO复合材料的孔容及BET比表面积先增大后减小,当GO负载量为5%(质量)时,复合材料MOF-505@5GO的孔容及BET比表面积达到最大,当GO负载量进一步增大至8%(质量)和10%(质量)时,复合材料的孔容及BET比表面积逐渐降低。在0.1 MPa和298 K条件下,MOF-505@5GO对CH4、C2H6和C3H8的吸附容量分别为0.88、4.81和5.17 mmol·g-1,相比MOF-505分别提高了14.9%、30.7%和13.1%。MOF-505@5GO对C2H6/CH4和C3H8/CH4的吸附选择性分别为40.1和3056.1,其对C2H6/CH4和C3H8/CH4具有极高的吸附选择性。

【关键词】 MOF-505@GO; 甲烷; 乙烷; 丙烷; 吸附(作用); 二元混合物;


【基金资助】 国家自然科学基金项目(21576092,21276092,21436005) supported by the National Natural Science Foundation of China(21576092,21276092,21436005)

Download this article


    [1]DUAN X,HE Y B,CUI Y J,et al.Highly selective separation of small hydrocarbons and carbon dioxide in a metal-organic framework withopen copper(Ⅱ)coordination sites[J].RSC Advances,2014,4(44):23058-23063.

    [2]HE Y B,KRISHNA B,CHEN B L.Metal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons[J].Energy&Environmental Science,2012,5(10):9107-9120.

    [3]DUAN X,ZHANG Q,CAI J F,et al.A new metal-organic framework with potential for adsorptive separation of methane from carbon dioxide,acetylene,ethylene,and ethane established by simulated breakthrough experiments[J].Journal of Materials Chemistry A,2014,2(8):2628-2633.

    [4]PLONKA A M,CHEN X Y,WANG H,et al.Light hydrocarbon adsorption mechanisms in two calcium-based microporous metal organic frameworks[J].Chemistry of Materials,2016,28(6):1636-1646.

    [5]HUANG L,CAO D P.Selective adsorption of olefin-paraffin on diamond-like frameworks:diamondyne and PAF-302[J].Journal of Materials Chemistry A,2013,1(33):9433-9439.

    [6]GEIER S J,MASON J A,BLOCH E D,et al.Selective adsorption of ethylene over ethane and propylene over propane in the metal-organic frameworks M2(dobdc)(M=Mg,Mn,Fe,Co,Ni,Zn)[J].Chemical Science,2013,4(5):2054-2061.

    [7]JIANG J W,SANDLER S I.Monte Carlo simulation for the adsorption and separation of linear and branched alkanes in IRMOF-1[J].Langmuir,2006,22(13):5702-5707.

    [8]SHEN W L,LI J X,YANG Y,et al.Binary adsorption equilibrium of CH4,N2 and CO2 on zeolite ZSM-5[J].CIESC Journal,2014,65(9):3490-3498.

    [9]LI M,TU S,ZHAO X,et al.Adsorption equilibrium prediction for CH4-C2H6 on activated carbon by real adsorption solution theory[J].CIESC Journal,2013,64(11):4082-4089.

    [10]HOWARTH A J,PETERS A W,VERMEULEN N A,et al.Best practices for the synthesis,activation,and characterization of metalorganic frameworks[J].Chemistry of Materials,2017,29(1):26-39.

    [11]HARTMANN M,BOHME U,HOVESTADT M,et al.Adsorptive separation of olefin/paraffin mixtures with ZIF-4[J].Langmuir,2015,31(45):12382-12389.

    [12]CAI J F,WANG H Z,WANG H L,et al.An amino-decorated Nb O-type metal-organic framework for high C2H2 storage and selective CO2capture[J].RSC Advances,2015,5:77417-77422.

    [13]ZOU R Y,REN X L,HUANG F,et al.A luminescent Zr-based metalorganic framework for sensing/capture of nitrobenzene and highpressure separation of CH4/C2H6[J].Journal of Materials Chemistry A,2015,3:23493-23500.

    [14]XIA T F,CAI J F,WANG H Z,et al.Microporous metal-organic frameworks with suitable pore spaces for acetylene storage and purification[J].Microporous and Mesoporous Materials,2015,215:109-115.

    [15]LIU K,MA D X,LI B Y,et al.High storage capacity and separation selectivity for C2 hydrocarbons over methane in the metal-organic framework Cu-TDPAT[J].Journal of Materials Chemistry A,2014,2(38):15823-15828.

    [16]HE Y B,XIANG S C,ZHANG Z J,et al.A microporous lanthanidetricarboxylate framework with the potential for purification of natural gas[J].Chemical Communications,2012,48(88):10856-10858.

    [17]HE Y B,ZHANG Z J,XIANG S C,et al.A microporous metal-organic framework for highly selective separation of acetylene,ethylene,and ethane from methane at room temperature[J].Chemistry-A European Journal,2012,18(2):613-619.

    [18]HE Y B,ZHANG Z J,XIANG S C,et al.High separation capacity and selectivity of C2 hydrocarbons over methane within a microporous metal-organic framework at room temperature[J].Chemistry-AEuropean Journal,2012,18(7):1901-1904.

    [19]CHEN Y W,QIAO Z E,LV D F,et al.Selective adsorption of light alkanes on a highly robust indium based metal-organic framework[J].Industrial&Engineering Chemistry Research,2017,56(15):4488-4495.

    [20]PRASANTH K P,RALLAPALLI P,RAJ M C,et al.Enhanced hydrogen sorption in single walled carbon nanotube incorporated MIL-101 composite metal-organic framework[J].International Journal of Hydrogen Energy,2011,36(13):7594-7601.

    [21]ZHAO Y X,SEREDYCH M,ZHONG Q,et al.Aminated graphite oxides and their composites with copper-based metal-organic framework:in search for efficient media for CO2 sequestration[J].RSCAdvances,2013,3(25):9932-9941.

    [22]KAYE S S,DAILLY A,YAGHI O M,et al.Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3(MOF-5)[J].Journal of the American Chemical Society,2007,129(46):14176-14177.

    [23]SUN X J,XIA Q B,ZHAO Z X,et al.Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane[J].Chemical Engineering Journal,2014,239:226-232.

    [24]PETIT C,BURRESS J,BANDOSZ T J.The synthesis and characterization of copper-based metal-organic framework/graphite oxide composites[J].Carbon,2011,49(2):563-572.

    [25]AMELOOT R,LIEKENS A,ALAERTS L,et al.Silica-MOFcomposites as a stationary phase in liquid chromatography[J].European Journal of Inorganic Chemistry,2010,24:3735-3738.

    [26]SOMAYAJULU R P B,RAJ M C,PATIL D V,et al.Activated carbon@MIL-101(Cr):a potential metal-organic framework compositematerial for hydrogen storage[J].International Journal of Energy Research,2013,37(3):746-753.

    [27]LI Y J,MIAO J P,SUN X J,et al.Mechanochemical synthesis of CuBTC@GO with enhanced water stability and toluene adsorption capacity[J].Chemical Engineering Journal,2016,298:191-197.

    [28]CHEN B L,OCKWIG N W,MILLWARD A R,et al.High H2adsorption in a microporous metal-organic framework with open metal sites[J].Angewandte Chemie International Edition,2005,44(30):4745-4749.

    [29]CHEN Y W,LV D F,WU J L,et al.A new MOF-505@GO composite with high selectivity for CO2/CH4 and CO2/N2 separation[J].Chemical Engineering Journal,2017,308:1065-1072.

    [30]KOVTYUKHOVA N I,OLLIVIER P J,MARTIN B R,et al.Layerby-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J].Chemistry of Materials,1999,11(3):771-778.

    [31]HSIAO M C,LIAO S H,YEN M Y,et al.Preparation of covalently functionalized graphene using residual oxygen-containing functional groups[J].ACS Applied Materials and Interfaces,2010,2(11):3092-2099.

    [32]MYERS A L,PRAUSNITZ J M.Thermodynamics of mixed-gas adsorption[J].AIChE J.,1965,11(1):121-127.

    [33]WALTON K S,SHOLL D S.Predicting multicomponent adsorption:50 years of the ideal adsorbed solution theory[J].AICh E J.,2015,61(9):2757-2762.

    [34]BLOCH E D,QUEEN W L,KRISHNA R,et al.Hydrocarbon separations in a metal-organic framework with open iron(Ⅱ)coordination sites[J].Science,2012,335:1606.

    [35]PIERS J,PINTO M L,SAINI V K.Ethane selective IRMOF-8 and its significance in ethane-ethylene separation by adsorption[J].ACS Appl.Mater.Interfaces,2014,6:12093-12099.

    [36]BANERJEE D,WANG H,PLONKA A M,et al.Direct structural identification of gas induced gate-opening coupled with commensurate adsorption in a microporous metal-organic framework[J].Chem.Eur.J.,2016,22:1-11.

    [37]HE Y B,ZHANG Z J,XIANG S C,et al.A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons[J].Chem.Commun.,2012,48:6493-6495.

This Article


CN: 11-1946/TQ

Vol 69, No. 04, Pages 1500-1507

April 2018


Article Outline


  • 引言
  • 1 实验部分
  • 2 结果与讨论
  • 3 结论
  • 参考文献