氧化石墨烯掺杂反渗透混合基质膜制备及性能

陈贤鸿1 傅倍佳2 钟明强2 徐立新2 周勇1 高从堦1

(1.浙江工业大学海洋学院, 浙江杭州 310014)
(2.浙江工业大学材料科学与工程学院, 浙江杭州 310014)

【摘要】由于芳香族聚酰胺反渗透膜在抗污染性以及耐氯性方面存在不足, 限制了其在海水淡化等方面的应用。采用往油相中添加氧化石墨烯 (GO) 的二次界面聚合法改性了商业反渗透膜, 评价了GO掺杂反渗透混合基质膜的分离性能和耐氯性能, 并用接触角仪、Zeta电位仪、扫描电镜和原子力显微镜等仪器表征了膜的亲水性能、荷电性能以及膜表面形貌。结果表明, GO的添加提高了膜的分离性能、耐氯性能和亲水性能;当GO添加量为30 mg·L-1时, 膜的通量为 (77.7±0.9) L·m-2·h-1, 膜的截留率为97.6%±0.5%, 相比商业膜分别提高了38.4%和4.5%。当氯化强度低于4800 mg·L-1·h时, 膜的水通量和盐截留率变化不明显。

【关键词】 反渗透; 氧化石墨烯; 二次界面聚合; 膜; 分离;

【DOI】

【基金资助】 国家重点研发计划项目 (2016YFC0401508) supported by the National Key Research and Development Program of China (2016YFC0401508) 国家重点基础研究发展计划项目 (2015CB655303) the National Basic Research Program of China (2015CB655303)

Download this article

    References

    [1]SHANNON M A, BOHN P W, ELIMELECH M, et al.Science and technology for water purification in the coming decades[J].Nature, 2008, 452 (7185) :301-310.

    [2]LALIA B S, KOCHKODAN V, HASHAIKEH R, et al.A review on membrane fabrication:structure, properties and performance relationship[J].Desalination, 2013, 326 (10) :77-95.

    [3]ZHAO G H, TONG Z D.Desalination Engineering and Technology[M].Beijing:Chemical Industry Press, 2012.

    [4]XU G R, WANG S H, ZHAO H L, et al.The development trend and expectation of the polyamide-based reverse osmosis desalination membranes[J].Membrane Science and Technology, 2015, 35 (5) :122-126.

    [5]LEE K P, ARNOT T C, MATTIA D.A review of reverse osmosis membrane materials for desalination-development to date and future potential[J].Journal of Membrane Science, 2011, 370 (1) :1-22.

    [6]GAO C J, ZHOU Y, LIU L F.Recent development and prospect of seawater reverse osmosis desalination technology[J].Journal of Ocean Technology, 2016, 35 (1) :1-14.

    [7]LI D, WANG H.Recent developments in reverse osmosis desalination membranes[J].Journal of Materials Chemistry, 2010, 20 (22) :4551-4566.

    [8]ZHANG Y S, WEI Y Y, CAO Z, et al.Progress and prospect in the development of reverse osmosis membrane technology[J].Chemical Industry and Engineering, 2015, 32 (5) :8-19.

    [9]SHENVI S S, ISLOOR A M, ISMAIL A F.A review on ROmembrane technology:developments and challenges[J].Desalination, 2015, 368:10-26.

    [10]GREENLEE L F, LAWLER D F, FREEMAN B D, et al.Reverse osmosis desalination:water sources, technology, and today’s challenges[J].Water Research, 2009, 43 (9) :2317-2348.

    [11]MATIN A, KHAN Z, ZAIDI S M J, et al.Biofouling in reverse osmosis membranes for seawater desalination:phenomena and prevention[J].Desalination, 2011, 281 (1) :1-16.

    [12]MISDAN N, LAU W J, ISMAIL A F.Seawater reverse osmosis (SWRO) desalination by thin-film composite membrane-current development, challenges and future prospects[J].Desalination, 2012, 287 (3) :228-237.

    [13]AVLONITIS S, HANBURY W T, HODGKIESS T.Chlorine degradation of aromatic polyamides[J].Desalination, 1992, 85 (3) :321-334.

    [14]BING S S, ZHOU Y, GAO C J.Progress of chlorine-resistant reverse osmosis membrane[J].Membrane Science and Technology, 2016, 36 (2) :115-121.

    [15]HUANG H, ZHANG L, HOU L A.Review in chlorine-tolerant reverse osmosis membranes for desalination[J].Engineering Sciences, 2014, 16 (7) :89-94.

    [16]CHAE H R, LEE J, LEE C H, et al.Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance[J].Journal of Membrane Science, 2015, 483:128-135.

    [17]KIM H J, LIM M Y, JUNG K H, et al.High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides[J].Journal of Materials Chemistry A, 2015, 3 (13) :6798-6809.

    [18]SAFARPOUR M, KHATAEE A, VATANPOUR V.Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO 2 with improved desalination performance[J].Journal of Membrane Science, 2015, 489 (5) :43-54.

    [19]ZHAO H, QIU S, WU L, et al.Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes[J].Journal of Membrane Science, 2014, 450:249-256.

    [20]BAO M, ZHU G, WANG L, et al.Preparation of monodispersed spherical mesoporous nanosilica-polyamide thin film composite reverse osmosis membranes via interfacial polymerization[J].Desalination, 2013, 309 (3) :261-266.

    [21]PARK K T, KIM S G, CHUN B H, et al.Sulfonated poly (arylene ether sulfone) thin film composite reverse osmosis membrane containing Si O2 nanoparticles[J].Desalination and Water Treatment, 2010, 15 (1/2/3) :69-75.

    [22]SABIR A, ISLAM A, SHAFIQ M, et al.Novel polymer matrix composite membrane doped with fumed silica particles for reverse osmosis desalination[J].Desalination, 2015, 368:159-170.

    [23]HEGAB H M, ZOU L.Graphene oxide-assisted membranes:fabrication and potential applications in desalination and water purification[J].Journal of Membrane Science, 2015, 484:95-106.

    [24]CHOI W, CHOI J, BANG J, et al.Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications[J].ACS Applied Materials&Interfaces, 2013, 5 (23) :12510-12519.

    [25]HEGAB H M, WIMALASIRI Y, GINIC-MARKOVIC M, et al.Improving the fouling resistance of brackish water membranes via surface modification with graphene oxide functionalized chitosan[J].Desalination, 2015, 365:99-107.

    [26]PERREAULT F, TOUSLEY M E, ELIMELECH M.Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets[J].Environmental Science&Technology Letters, 2013, 1 (1) :71-76.

    [27]XIAO L, WANG Y L, YU S L, et al.Graphene-containing composite materials for water treatment[J].Progress in Chemistry, 2013, 25 (2/3) :419-430.

    [28]LIU Q, XU G R.Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes[J].Desalination, 2016, 394:162-175.

    [29]YIN J, ZHU G, DENG B.Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification[J].Desalination, 2016, 379:93-101.

    [30]SHENOY R, BOWMAN C N.A Comprehensive kinetic model of free-radical-mediated interfacial polymerization[J].Macromolecular Theory and Simulations, 2013, 22 (2) :115-126.

    [31]LIU L F, XU D Z, CHEN H L, et al.Novel polyamide-urea-imide composite reverse osmosis membrane prepared via two-step interfacial polymerization[J].CIESC Journal, 2012, 63 (6) :1913-1921.

    [32]DENG H, SUN P Z, ZHANG Y J, et al.Applications of graphene-based materials in water treatment:mass transport and pollutants adsorption[J].Chinese Science Bulletin, 2015, 60 (33) :3196-3209.

    [33]QIU S, WU L G, ZHANG L, et al.Effect of addition of alcohols on preparation of reverse osmosis composite membrane with high flux by interfacial polymerization[J].CIESC Journal, 2011, 62 (12) :3440-3446.

    [34]AVLONITIS S, HANBURY W T, HODGKIESS T.Chlorine degradation of aromatic polyamides[J].Desalination, 1992, 85 (3) :321-334.

    [35]DO V T, TANG C Y, REINHARD M, et al.Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite[J].Environmental Science&Technology, 2012, 46 (2) :852-859.

    [36]WATTS P C P, FEARON P K, HSU W K, et al.Carbon nanotubes as polymer antioxidants[J].Journal of Materials Chemistry, 2003, 13 (3) :491-495.

    [37]SHI X, JIANG B, WANG J, et al.Influence of wall number and surface functionalization of carbon nanotubes on their antioxidant behavior in high density polyethylene[J].Carbon, 2012, 50 (3) :1005-1013.

This Article

ISSN:0438-1157

CN: 11-1946/TQ

Vol 69, No. 01, Pages 429-434

January 2018

Downloads:1

Share
Article Outline

摘要

  • 引言
  • 1 实验部分
  • 2 实验结果与讨论
  • 3 结论
  • 参考文献