Side-by-side Chinese-English


王建林1 马琳钰1 刘伟旻1 邱科鹏1 于涛1

(1.北京化工大学信息科学与技术学院, 北京 100029)

【摘要】基于支持向量数据描述的间歇过程监测方法选择历史过程数据中最大的核距离作为控制限, 忽略了高维空间中超球体的不规则性, 导致基于该方法的过程监测精度不高。针对上述问题, 提出了一种基于核相似度支持向量数据描述的间歇过程监测方法, 将间歇过程数据待监测样本与支持向量之间的核函数值作为相似度权重, 利用该相似度对不同时刻的支持向量球心距加权求和, 得到待监测间歇过程数据样本的动态控制限, 通过判断待监测样本的球心距是否超过其动态控制限, 实现间歇过程监测。所提方法综合考虑了超球体的不规则性和过程数据在高维空间分布的局部特性, 以及间歇过程数据待监测样本的时变性, 提高了间歇过程监测的准确性。利用数值仿真实验和半导体金属刻蚀实验验证了该方法的有效性。

【关键词】 核相似度;支持向量数据描述;动态监测;间歇过程;


【基金资助】 国家自然科学基金项目 (61240047) ; 北京市自然科学基金项目 (4152041) ;

Batch process monitoring by kernel similarity-based support vector data description

WANG Jianlin1 MA Linyu1 LIU Weimin1 QIU Kepeng1 YU Tao1

(1.College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China 100029)

【Abstract】Kernel distance-based support vector data description (SVDD) for batch process monitoring exhibited poor monitoring precision by setting control limit from the largest kernel distance in historical process dataset but ignoring hyperspherical irregularity in high dimensional space. A kernel similarity based SVDD monitoring method was proposed for batch process monitoring. Kernel similarity was taken as kernel function value between support vectors and data samples for testing. The weighted summation of kernel similarity and distance of support vectors at various time points was utilized to set dynamic control limit for data samples of batch process to be monitored. Batch process monitoring was achieved by judging if kernel distance of test sample exceeded the dynamic control limit. This monitoring method considered irregularity of hypersphere, local distribution characteristics of process dataset in high dimensional space, and spontaneity of data samples, so that it could improve accuracy in batch process monitoring. The method effectiveness was demonstrated by numerical simulation and metal etching process in semiconductor manufacturing.

【Keywords】 kernel similarity; support vector data description; dynamic monitoring; batch process;


【Funds】 National Natural Science Foundation of China (61240047) ; Natural Science Foundation of Beijing, China (4152041) ;

Download this article

    [1] JIANG Q C, YAN X F. Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring [J]. AICh E Journal, 2014, 60 (3): 949–965.

    [2] HU Y, MA H H, SHI H B. Enhanced batch process monitoring using just-in-time-learning based kernel partial least squares [J]. Chemometrics and Intelligent Laboratory Systems, 2013, 123 (3): 15–27.

    [3] RASHID M M, YU J. Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach [J]. Industrial & Engineering Chemistry Research, 2012, 51 (33): 10910–10920.

    [4] ZHAO C H, SUN Y X. Step-wise sequential phase partition (SSPP) algorithm based statistical modeling and online process monitoring [J]. Chemometrics and Intelligent Laboratory Systems, 2013, 125 (5): 109–120.

    [5] ZHAO C H, WANG F L, YAO Y, et al. Phase-based statistical modeling, online monitoring and quality prediction for batch processes [J]. Acta Automatica Sinica, 2010, 36 (3): 366–374 (in Chinese).

    [6] ZHANG J M, GE Z Q, XIE L, et al. Non-Gaussian process monitoring and fault reconstruction and diagnosis based on SVDD [J]. CIESC Journal, 2009, 60 (1): 169–171 (in Chinese).

    [7] WANG P L, GE Z Q, SONG Z H. Online fault monitoring for batch processes based on adaptive multi-model ICA-SVDD [J]. Chinese Journal of Scientific Instrument, 2009, 30 (7): 1347–1352 (in Chinese).

    [8] MACGREGOR J F, KOURTI T. Statistical process control of multivariate processes [J]. Control Engineering Practice, 1995, 3 (3): 403–414.

    [9] KITTIWACHANA S, FERREIRA D L S, LLOYD G R, et al. One class classifiers for process monitoring illustrated by the application to online HPLC of a continuous process [J]. Journal of Chemometrics, 2010, 24 (3/4): 96–110.

    [10] KITTIWACHANA S, FERREIRA D L S, FIDO L A, et al. Self-organizing map quality control index [J]. Analytical Chemistry, 2010, 82 (14): 5972–5982.

    [11] NING X H, TSUNG F G. A density-based statistical process control scheme for high-dimensional and mixed-type observations [J]. IIE Transactions, 2012, 44 (4): 301–311.

    [12] NOMIKOS P, MACGREGOR J F. Monitoring batch processes using multiway principal component analysis [J]. AICh E Journal, 1994, 40 (8): 1361–1375.

    [13] NOMIKOS P, MACGREGOR J F. Multi-way partial least squares in monitoring batch processes [J]. Chemometrics & Intelligent Laboratory Systems, 1995, 30 (1): 97–108.

    [14] CHANG K Y, LEE J M, VANROLLEGHEM P A, et al. On-line monitoring of batch processes using multiway independent component analysis [J]. Chemometrics and Intelligent Laboratory Systems, 2004, 71 (2): 151–163.

    [15] LU N Y, GAO F R, WANG F L. Sub-PCA modeling and on-line monitoring strategy for batch processes [J]. AICh E Journal, 2004, 50 (1): 255–259.

    [16] YAO Y, GAO F R. A survey on multistage/multiphase statistical modeling methods for batch processes [J]. Annual Reviews in Control, 2009, 33 (2): 172–183.

    [17] KANG J H, YU J, KIM S B. Adaptive nonparametric control chart for time-varying and multimodal processes [J]. Journal of Process Control, 2016, 37: 34–45.

    [18] GANI W, TALEB H, LIMAM M. An assessment of the kernel-distance-based multivariate control chart through an industrial application [J]. Quality and Reliability Engineering International, 2011, 27 (4): 391–401.

    [19] GE Z Q, SONG Z H. Bagging support vector data description model for batch process monitoring [J]. Journal of Process Control, 2013, 23: 1090–1096.

    [20] LEE J M, YOO C K, LEE I B. Fault detection of batch processes using multiway kernel principal component analysis [J]. Computers & Chemical Engineering, 2004, 28 (9): 1837–1847.

    [21] ZHANG Y W, HU Z Y. On-line batch process monitoring using hierarchical kernel partial least squares [J]. Chemical Engineering Research and Design, 2011, 89 (10): 2078–2084

    [22] SUN R X, TSUNG F G. A kernel-distance-based multivariate control chart using support vector methods [J]. International Journal of Production Research, 2003, 41 (13): 2975–2989.

    [23] CAMCI F, CHINNAM R B, ELLIS R D. Robust kernel distance multivariate control chart using support vector principles [J]. International Journal of Production Research, 2008, 46 (18): 5075–5095.

    [24] NING X H, TSUNG F G. Improved design of kernel distance-based charts using support vector methods [J]. IIE Transactions, 2013, 45 (4): 464–476.

    [25] SUKCHOTRAT T, KIM S B, TSUNG F G. One-class classification-based control charts for multivariate process monitoring [J]. IIE transactions, 2009, 42 (2): 107–120.

    [26] KHEDIRI I B, WEIHS C, LIMAM M. Kernel k-means clustering based local support vector domain description fault detection of multimodal processes [J]. Expert Systems with Applications, 2012, 39 (2): 2166–2171.

    [27] TAX D M J, DUIN R P W. Support vector domain description [J]. Pattern recognition letters, 1999, 20 (11): 1191–1199.

    [28] TAX D M J, DUIN R P W. Support vector data description [J]. Machine Learning, 2004, 54 (1): 45–66.

    [29] SAKLA W, CHAN A, JI J, et al. An SVDD-based algorithm for target detection in hyperspectral imagery [J]. Geoscience and Remote Sensing Letters, IEEE, 2011, 8 (2): 384–388.

    [30] GE Z Q, GAO F R, SONG Z H. Batch process monitoring based on support vector data description method [J]. Journal of Process Control, 2011, 21 (6): 949–959.

    [31] YAO M, WANG H G, XU W L. Batch process monitoring based on functional data analysis and support vector data description [J]. Journal of Process Control, 2014, 24 (7): 1085–1097.

This Article


CN: 11-1946/TQ

Vol 68, No. 09, Pages 3494-3500

September 2017


Article Outline


  • Introduction
  • 1 Process monitoring based on SVDD
  • 2 Batch process monitoring based on kernel similarity SVDD
  • 3 Experimental verification
  • 4 Conclusion
  • References