基于核相似度支持向量数据描述的间歇过程监测

王建林1 马琳钰1 刘伟旻1 邱科鹏1 于涛1

(1.北京化工大学信息科学与技术学院, 北京 100029)

【摘要】基于支持向量数据描述的间歇过程监测方法选择历史过程数据中最大的核距离作为控制限, 忽略了高维空间中超球体的不规则性, 导致基于该方法的过程监测精度不高。针对上述问题, 提出了一种基于核相似度支持向量数据描述的间歇过程监测方法, 将间歇过程数据待监测样本与支持向量之间的核函数值作为相似度权重, 利用该相似度对不同时刻的支持向量球心距加权求和, 得到待监测间歇过程数据样本的动态控制限, 通过判断待监测样本的球心距是否超过其动态控制限, 实现间歇过程监测。所提方法综合考虑了超球体的不规则性和过程数据在高维空间分布的局部特性, 以及间歇过程数据待监测样本的时变性, 提高了间歇过程监测的准确性。利用数值仿真实验和半导体金属刻蚀实验验证了该方法的有效性。

【关键词】 核相似度; 支持向量数据描述; 动态监测; 间歇过程;

【DOI】

【基金资助】 国家自然科学基金项目 (61240047) supported by the National Natural Science Foundation of China (61240047) 北京市自然科学基金项目 (4152041) the Beijing Natural Science Foundation (4152041)

Download this article

    References

    [1]JIANG Q C, YAN X F.Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring[J].AICh E Journal, 2014, 60 (3) :949-965.

    [2]HU Y, MA H H, SHI H B.Enhanced batch process monitoring using just-in-time-learning based kernel partial least squares[J].Chemometrics and Intelligent Laboratory Systems, 2013, 123 (3) :15-27.

    [3]RASHID M M, YU J.Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach[J].Industrial&Engineering Chemistry Research, 2012, 51 (33) :10910-10920.

    [4]ZHAO C H, SUN Y X.Step-wise sequential phase partition (SSPP) algorithm based statistical modeling and online process monitoring[J].Chemometrics and Intelligent Laboratory Systems, 2013, 125 (5) :109-120.

    [5]ZHAO C H, WANG F L, YAO Y, et al.Phase-based statistical modeling, online monitoring and quality prediction for batch processes[J].Acta Automatica Sinica, 2010, 36 (3) :366-374.

    [6]ZHANG J M, GE Z Q, XIE L, et al.Non-Gaussian process monitoring and fault reconstruction and diagnosis based on SVDD[J].CIESC Journal, 2009, 60 (1) :169-171.

    [7]WANG P L, GE Z Q, SONG Z H.Online fault monitoring for batch processes based on adaptive multi-model ICA-SVDD[J].Chinese Journal of Scientific Instrument, 2009, 30 (7) :1347-1352.

    [8]MACGREGOR J F, KOURTI T.Statistical process control of multivariate processes[J].Control Engineering Practice, 1995, 3 (3) :403-414.

    [9]KITTIWACHANA S, FERREIRA D L S, LLOYD G R, et al.One class classifiers for process monitoring illustrated by the application to online HPLC of a continuous process[J].Journal of Chemometrics, 2010, 24 (3/4) :96-110.

    [10]KITTIWACHANA S, FERREIRA D L S, FIDO L A, et al.Self-organizing map quality control index[J].Analytical Chemistry, 2010, 82 (14) :5972-5982.

    [11]NING X H, TSUNG F G.A density-based statistical process control scheme for high-dimensional and mixed-type observations[J].IIE Transactions, 2012, 44 (4) :301-311.

    [12]NOMIKOS P, MACGREGOR J F.Monitoring batch processes using multiway principal component analysis[J].AICh E Journal, 1994, 40 (8) :1361-1375.

    [13]NOMIKOS P, MACGREGOR J F.Multi-way partial least squares in monitoring batch processes[J].Chemometrics&Intelligent Laboratory Systems, 1995, 30 (1) :97-108.

    [14]CHANG K Y, LEE J M, VANROLLEGHEM P A, et al.On-line monitoring of batch processes using multiway independent component analysis[J].Chemometrics and Intelligent Laboratory Systems, 2004, 71 (2) :151-163.

    [15]LU N Y, GAO F R, WANG F L.Sub-PCA modeling and on-line monitoring strategy for batch processes[J].AICh E Journal, 2004, 50 (1) :255-259.

    [16]YAO Y, GAO F R.A survey on multistage/multiphase statistical modeling methods for batch processes[J].Annual Reviews in Control, 2009, 33 (2) :172-183.

    [17]KANG J H, YU J, KIM S B.Adaptive nonparametric control chart for time-varying and multimodal processes[J].Journal of Process Control, 2016, 37:34-45.

    [18]GANI W, TALEB H, LIMAM M.An assessment of the kernel-distance-based multivariate control chart through an industrial application[J].Quality and Reliability Engineering International, 2011, 27 (4) :391-401.

    [19]GE Z Q, SONG Z H.Bagging support vector data description model for batch process monitoring[J].Journal of Process Control, 2013, 23:1090-1096.

    [20]LEE J M, YOO C K, LEE I B.Fault detection of batch processes using multiway kernel principal component analysis[J].Computers&Chemical Engineering, 2004, 28 (9) :1837-1847.

    [21]ZHANG Y W, HU Z Y.On-line batch process monitoring using hierarchical kernel partial least squares[J].Chemical Engineering Research and Design, 2011, 89 (10) :2078-2084

    [22]SUN R X, TSUNG F G.A kernel-distance-based multivariate control chart using support vector methods[J].International Journal of Production Research, 2003, 41 (13) :2975-2989.

    [23]CAMCI F, CHINNAM R B, ELLIS R D.Robust kernel distance multivariate control chart using support vector principles[J].International Journal of Production Research, 2008, 46 (18) :5075-5095.

    [24]NING X H, TSUNG F G.Improved design of kernel distance-based charts using support vector methods[J].IIE Transactions, 2013, 45 (4) :464-476.

    [25]SUKCHOTRAT T, KIM S B, TSUNG F G.One-class classification-based control charts for multivariate process monitoring[J].IIE transactions, 2009, 42 (2) :107-120.

    [26]KHEDIRI I B, WEIHS C, LIMAM M.Kernel k-means clustering based local support vector domain description fault detection of multimodal processes[J].Expert Systems with Applications, 2012, 39 (2) :2166-2171.

    [27]TAX D M J, DUIN R P W.Support vector domain description[J].Pattern recognition letters, 1999, 20 (11) :1191-1199.

    [28]TAX D M J, DUIN R P W.Support vector data description[J].Machine Learning, 2004, 54 (1) :45-66.

    [29]SAKLA W, CHAN A, JI J, et al.An SVDD-based algorithm for target detection in hyperspectral imagery[J].Geoscience and Remote Sensing Letters, IEEE, 2011, 8 (2) :384-388.

    [30]GE Z Q, GAO F R, SONG Z H.Batch process monitoring based on support vector data description method[J].Journal of Process Control, 2011, 21 (6) :949-959.

    [31]YAO M, WANG H G, XU W L.Batch process monitoring based on functional data analysis and support vector data description[J].Journal of Process Control, 2014, 24 (7) :1085-1097.

This Article

ISSN:0438-1157

CN: 11-1946/TQ

Vol 68, No. 09, Pages 3494-3500

September 2017

Downloads:0

Share
Article Outline

摘要

  • 引言
  • 1 基于SVDD的过程监测
  • 2 基于核相似度SVDD的间歇过程监测
  • 3 实验验证
  • 4 结论
  • 参考文献