Side-by-side Chinese-English


李振涛1 黄佰朋1,2 郝木明1 孙鑫晖1 王赟磊1 杨文静1

(1.中国石油大学 (华东) 密封技术研究所, 山东青岛 266580)
(2.中国石油独山子石化公司, 新疆克拉玛依 833699)

【摘要】为降低密封面间液体流动发散区液膜压力损失及提高密封性能, 在矩形截面螺旋槽中引入周向斜面台阶结构并建立物理模型。基于JFO空化边界, 探讨了不同槽深时, 斜面转角比对液膜压力、降低空穴发生及流体动压性能的影响。结果表明:当斜面转角比小于1/30时, 下游泵送或上游泵送液膜密封的周向膜压或螺旋线方向膜压均得到迅速提升而空化面积比迅速降低, 尤其是上游泵送密封;随斜面转角比增大, 空化面积比先增大后减小, 空穴区中液膜开始破裂位置前缘压力呈增加趋势, 而液膜重生成位置后缘压力反之。槽深的增加有助于提升液膜压力和降低空化面积比, 当槽深为8~12μm, 在斜面转角比为0.1~0.3时, 两类型液膜密封承载能力均可达到最大值, 前者最大增幅约13.5%, 后者约28%;摩擦扭矩最大增幅约4.6%, 增幅较小;泄漏量随斜面转角比的变化规律与承载能力相似。

【关键词】 螺旋槽液膜密封;周向斜面台阶;流体动压性能;液膜压力;空化面积比;


【基金资助】 国家自然科学基金项目 (51375497) ; 山东省自主创新及成果转化专项项目 (2014ZZCX10102-4) ;

Hydrodynamic performance of liquid film seals in circumferential beveled-step spiral grooves

LI Zhentao1 HUANG Baipeng1,2 HAO Muming1 SUN Xinhui1 WANG Yunlei1 YANG Wenjing1

(1.Institute of Sealing Technology, China University of Petroleum, Qingdao, Shandong, China 266580)
(2.CNPC Dushanzi Petrochemical Company, Kelamayi, Xinjiang, China 833699)

【Abstract】To reduce liquid film pressure loss in liquid flow divergent zone between sealing surfaces and to improve sealing performance, the structure of circumferential beveled-step was introduced into rectangular section spiral groove and corresponding physical model was established. Based on the JFO cavitation model, the effects of bevel angle ratio on liquid film pressure distribution, cavitation occurrence, and liquid film hydrodynamic performance were studied at different groove depths. When bevel angle ratio was below 1/30, liquid film pressures of downstream and upstream pumping liquid film seals along circumferential and spiral line direction were enhanced rapidly but cavitation area ratio was dropped sharply, which was more significant for upstream pumping seals. With the increase of bevel angle ratio, leading edge pressure at liquid film rupture showed an increasing trend and trailing edge pressure at liquid film reformation showed opposite trend, but cavitation area ratio increased first and decreased later. The increase of groove depth contributed to the increase of liquid film pressure and the decrease of cavitation area ratio. When groove depth ranged from 8 to 12 μm and bevel angle ratio ranged from 0.1 to 0.3, the load-carrying capacities of both liquid film seals reached to peak values with about 13.5% maximum amplification for the former and about 28% for the latter, whereas increase of friction torque was smaller with about 4.6% maximum amplification. The leakage change along with the increase of bevel angle ratio was similar to the load-carrying capacity.

【Keywords】 spiral groove liquid film seals; circumferential beveled-step; hydrodynamic performance; liquid film pressure; cavitation area ratio;


【Funds】 National Natural Science Foundation of China (51375497) ; Shandong Special Projects of Independent Innovation and Achievement Transformation (2014ZZCX10102-4) ;

Download this article

    [1]STORM T N, LUDWIG L P, ALLEN G P, et al. Spiral groove face seal concepts;comparison to conventional face seals in sealing liquid sodium (400 to 1000 Deg F) [J]. Journal of Lubrication Technology, 1968, 90 (2): 450–463. DOI:10.1115/1.3601580.

    [2]BUCK G S, VODEN D. Upstream pumping: a new concept in mechanical sealing technology[J]. Lubrication Engineering, 1990, 46 (4): 213–217.

    [3]SALANT R F, HOMILLER S J. Stiffness and leakage in spiral groove upstream pumping mechanical seals[J]. Tribology Transactions, 1993, 36 (1): 55–60. DOI:10.1080/10402009308983132.

    [4]WANG Y M, WANG J L, YANG H X, et al. Theoretical analyses and design guidelines of oil–film lubricated mechanical face seals with spiral grooves[J]. Tribology Transactions, 2004, 47 (4): 537–542. DOI:10.1080/05698190490500743.

    [5]HAO M M, LI Z T, REN B J, et al. Mechanical Seal Technology and Application[M]. 2nd ed. Beijing: China Petrochemical Press, 2014: 76–78 (in Chinese).

    [6]HAO M M. HU D M, GUO J. Performance study of the new upstream pumping mechanical seal[J]. Chemical Machinery, 2001, 28 (1): 12–15 (in Chinese).

    [7]BURTON R A. An experimental study of turbulent flow in a spiral–groove configuration[J]. Journal of Lubrication Technology, 1968, 90 (2): 443–449. DOI:10.1115/1. 3601579.

    [8]GAD A M, NEMAT-ALLA M M, KHALIL A A, et al. On the optimum groove geometry for herringbone grooved journal bearings[J]. Journal of Tribology, 2006, 128 (3): 585–593. DOI:10.1115/1.2197524.

    [9]WANG T, HUANG W F, WANG Y M. Research and progress of mechanical seals operating with vaporization transition[J]. CIESC Journal, 2012, 63 (11): 3375–3382 (in Chinese).

    [10]CHEN H L, WU Q B, ZUO M Z, et al. Overview on liquid film cavitation in mechanical seal faces[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33 (2): 138–144. DOI:10.3969/j.issn.1674-8530.14.0085 (in Chinese).

    [11]HAO M M, ZHUANG Y, ZHANG D H, et al. Numerical study on sealing performance of spiral groove liquid film seal considering effects of cavitation[J]. Journal of China University of Petroleum, 2015, 39 (3): 132–137. DOI:10.3969/j.issn.1673-5005.2015.03.018 (in Chinese).

    [12]QIU Y, KHONSARI M M. Experimental investigation of tribological performance of laser textured stainless steel rings[J]. Tribology International, 2011, 44 (5): 635–644. DOI:org/10.1016/j. triboint.2011.01.003.

    [13]XIE Y, LI Y J, SUO S F, et al. A mass-conservative average flow model based on finite element method for complex textured surfaces[J]. Sic. China-Phys. Mech. Astron., 2013, 56 (10): 1909–1919. DOI:10.1007/s11433-013-5217-z.

    [14]MENG X K, BAI S X, PENG X D. An efficient adaptive finite element method algorithm with mass conservation for analysis of liquid face seals[J]. Journal of Zhejiang University-SCIENCE (Applied Physics & Engineering) , 2014, 15 (3): 172–184. DOI:10.1631/jzus.A1300328.

    [15]ZHANG J Y, WANG X L. Performance of dynamically loaded journal bearing with couple stress fluids considering mass-conserving boundary condition[J]. Journal of Mechanical Engineering, 2010, 46 (15): 102–106. DOI:10.3901/JME.2010.15.102 (in Chinese).

    [16]YU T H, SADEGHI F. Groove effects on thrust washer lubrication[J]. Journal of Tribology, 2001, 123 (2): 295–304.

    [17]LIU D H, HU J B. Effect of cavitation model on the performance of radial grooved face seals[J]. Transactions of Beijing Institute of Technology, 2012, 32 (11): 1101–1104. DOI:10.15918/j.tbit1001-0645.2012.11.019 (in Chinese).

    [18]LI J H. Numerical computational method and experimental study for cavitation in mechanical seals[D]. Beijing: Tsinghua University, 2011 (in Chinese).

    [19]ZHAO Y M, HU J B, WEI C. Dynamic analysis of spiral-groove rotary seal ring for wet clutches[J]. Journal of Tribology, 2014, 136 (3): 031710-1-10. DOI:10.1115/1 4027548.

    [20]ZHAO Y M, HU J B, WU W, et al. Prediction of lubrication condition transition for spiral groove rotary seal rings[J]. Journal of Mechanical Engineering, 2013, 49 (9): 75–80. DOI:10.3901/JME.2013.09.075 (in Chinese).

    [21]LI Z T, HAO M M, YANG W J, et al. Effects of waviness and taper on cavitation characteristic of liquid lubricated mechanical seals[J]. CIESC Journal, 2016, 67 (5): 2005–2014 (in Chinese).

    [22]LI Z T, HAO M M, YANG W J, et al. Cavitation mechanism of spiral groove liquid film seals[J]. CIESC Journal, 2016, 67 (11): 4750–4761 (in Chinese).

    [23]NEMAT-ALLA M M, GAD A M, KHALIL A A, et al. Static and dynamic characteristics of oil lubricated beveled–step herringbone-grooved journal bearings[J]. Journal of Tribology, 2009, 131 (1): 011701–011707. DOI:10.1115/1.2908903.

    [24]ABDELAAI O A, KHALIL A A, NASR A M. Characteristics of oil-lubricated partially herringbone grooved journal bearing[J]. Journal of Engineering Sciences, Assiut University, 2009, 37 (4): 925–942.

    [25]JAMES D D, POTTER A F. Numerical analysis of the gas-lubricated spiralgroove thrust bearing-compressor[J]. Journal of Lubrication Technology, 1967, 89 (4): 439–443. DOI:10.1115/1.3617023.

    [26]KAWABATA N. A study on the numerical analysis of fluid film lubrication by the boundary-fitted coordinates system[J]. Transactions of Japan Society of Mechanical Engineers, Series C, 1987, 53 (494): 2155–2160.

    [27]CHRISTOPHE M, NOEI B, TOURNERIE B. A deterministic mixed lubrication model for mechanical seals[J]. Journal of Tribology, 2011, 133 (4): 042203. DOI:10.1115/1.4005068.

    [28]JAKOBSSON B, FLOBERG L. The finite journal bearing, considering vaporization[J]. Wear, 1958, 2 (2): 85–88.

    [29]OLSSON K O. Cavitation in dynamically loaded bearings[J]. Wear, 1967, 55 (2): 295–304.

    [30]ELROD H G. A cavitation algorithm[J]. Journal of Lubrication Technology, 1981, 103 (3): 350–354. DOI:10.1115/1.3251669.

    [31]PAYVAR P, SALANT R F. A computational method for cavitation in a wavy mechanical seal[J]. Journal of Tribology, 1992, 114 (1): 199–204. DOI:10.1115/1.2920861.

    [32]SHYY W, TONG S S, CORREA S M. Numerical recirculating flow calculation using a body-fitted coordinate system[J]. Numerical Heat Transfer, 1985, 8: 99–113. DOI:10.1080/01495728508961844.

    [33]PATANKAR S V. Numerical Heat Transfer and Fluid Flow[M]. London: Taylor & Francis, 1980: 72–73.

    [34]FESANGHARY M, KHONSARI M M. A modification of the switch function in the Elrod cavitation algorithm[J]. Journal of Tribology, 2011, 133 (2): 024501. DOI:10.1115/1.4003484.

    [35]XU S L, FAN W X. Multi-grid method for solving Reynolds equation[J]. Mechanical Engineering & Automation, 2013, (2): 70–71 (in Chinese).

    [36]LEBECK A O. Principles and Design of Mechanical Face Seals[M]. New York: John Wiley & Sons Inc. , 1991: 152–162.

This Article


CN: 11-1946/TQ

Vol 68, No. 05, Pages 2016-2026

May 2017


Article Outline


  • Introduction
  • 1 Physical modeling
  • 2 Governing equation and discrete solution
  • 3 Calculation results and analysis
  • 4 Conclusions
  • Symbol description
  • References