超材料中高阶效应影响下飞秒准亮孤子解及其特性

白娟1 杨荣草1 田晋平1

(1.山西大学物理电子工程学院, 山西太原 030006)

【摘要】基于描述超材料中超短脉冲传输的高阶非线性薛定谔方程,采用行波法得到一种精确的飞秒准亮孤子解及其存在条件。研究发现,在群速度色散、三阶色散、三次-五次非线性、自陡峭和二阶非线性色散效应的精确平衡下,超材料中可存在该飞秒准孤子;当三阶色散和二阶非线性色散不存在时,该准孤子无法存在。基于Drude模型,详细讨论了不同非线性超材料中该飞秒准亮孤子存在的不同折射区域。结果表明,该飞秒准孤子可存在于自散焦非线性超材料的负折射区和自聚焦非线性超材料的正折射区,而且在不同区域具有不同的脉冲强度和宽度。这意味着,通过选择不同非线性超材料和输入电磁波的频率,使其位于相应的存在区域,可以实现对孤子特性的调控。

【关键词】 非线性光学; 飞秒准亮孤子; 自散焦; 自聚焦; 非线性超材料; 负折射;

【DOI】

【基金资助】 国家自然科学基金(61775126) 山西省自然科学基金(201801D221164,201801D121119)

Download this article

    References

    [1] Hasegawa A,Tappert F.Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers.I. Anomalous dispersion[J]. Applied Physics Letters,1973,23(3):142-144.

    [2] Agrawal G P.Nonlinear fiber optics&application of nonlinear fiber optics[M].Jia D F,Yu Z H,Tan B,et al.,Transl.Beijing:Electronic Industry Press,2002:94-104.Agrawal G P.

    [3] Kruglov V I,Peacock A C,Harvey J D.Exact solutions of the generalized nonlinear Schrdinger equation with distributed coefficients[J].Physical Review E,2005,71(5):056619.

    [4] Yang J W,Gao Y T,Feng Y J,et al.Solitons and dromion-like structures in an inhomogeneous optical fiber[J].Nonlinear Dynamics,2017,87(2):851-862.

    [5] Kong D F,Jia D F,Feng D J,et al.Soliton selffrequency shift in optical fibers[J]. Laser&Optoelectronics Progress,2018,55(10):101902.

    [6] Wang L,Yang R C,Jia H P,et al.Periodically lumped amplification and recovery of soliton in dispersion-decreasing optic fiber link[J].Acta Optica Sinica,2017,37(6):0619001.

    [7] Veselago V G.The electrodynamics of substances with simultaneously negative values ofεandμ[J].Soviet Physics Uspekhi,1968,10(4):509-514.

    [8] Lee S H,Park C M,Seo Y M,et al.Reversed Doppler effect in double negative metamaterials[J].Physical Review B,2010,81(24):241102.

    [9] Shalaev V M.Optical negative-index metamaterials[J].Nature Photonics,2007,1(1):41-48.

    [10] Yang R C, Shadrivov I V. Double-nonlinear metamaterials[J].Applied Physics Letters,2010,97(23):231114.

    [11] Fan K B,Hwang H Y,Liu M K,et al.Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs[J].Physical Review Letters,2013,110(21):217404.

    [12] Gao F,Yang R C,Jia H P,et al.Exact solution of spatial chirped dark soliton in metamaterials and its propagation characteristics[J].Acta Optica Sinica,2019,39(2):0219001.

    [13] Kozyrev A B,Shadrivov I V,Kivshar Y S.Soliton generation in active nonlinear metamaterials[J].Applied Physics Letters,2014,104(8):084105.

    [14] English L Q, Wheeler S G, Shen Y,et al.Backward-wave propagation and discrete solitons in a left-handed electrical lattice[J].Physics Letters A,2011,375(9):1242-1248.

    [15] Lazarides N,Tsironis G P.Publisher′s note:coupled nonlinear Schrdinger field equations for electromagnetic wave propagation in nonlinear lefthanded materials[Phys.Rev.E71,036614(2005)][J].Physical Review E,2005,71(4):049903.

    [16] Scalora M, Syrchin M S, Akozbek N,et al.Generalized nonlinear Schrdinger equation for dispersive susceptibility and permeability:application to negative index materials[J].Physical Review Letters,2005,95(1):013902.

    [17] Wen S C,Xiang Y J,Dai X Y,et al.Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials[J].Physical Review A,2007,75(3):033815.

    [18] Li P G,Yang R C,Xu Z Y.Gray solitary-wave solutions in nonlinear negative-index materials[J].Physical Review E,2010,82(4):046603.

    [19] Sharma V K,Goyal A,Raju T S,et al.Periodic and solitary wave solutions for ultrashort pulses in negative-index materials[J].Journal of Modern Optics,2013,60(10):836-840.

    [20] Yang R C,Min X M,Tian J P,et al.New types of exact quasi-soliton solutions in metamaterials[J].Physica Scripta,2016,91(2):025201.

    [21] Yang R C,Zhang Y.Exact combined solitary wave solutions in nonlinear metamaterials[J].Journal of the Optical Society of America B,2011,28(1):123-127.

    [22] Triki H,Zhou Q, Moshokoa S P,et al.Novel singular solitons in optical metamaterials for selfsteepening effect[J].Optik,2018,154:545-550.

    [23] Biswas A,Ekici M,Sonmezoglu A,et al.Chirped solitons in optical metamaterials with parabolic law nonlinearity by extended trial function method[J].Optik,2018,160:92-99.

    [24] Daoui A K,Triki H,Biswas A,et al.Chirped bright and double-kinked quasi-solitons in optical metamaterials with self-steepening nonlinearity[J].Journal of Modern Optics,2019,66(2):192-199.

    [25] Daoui A K,Azzouzi F,Triki H,et al.Propagation of chirped gray optical dips in nonlinear metamaterials[J].Optics Communications,2019,430:461-466.

    [26] Li X Z,Wang M L.A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms[J].Physics Letters A,2007,361(1/2):115-118.

    [27] Serge D Y,Justin M,Betchewe G,et al.Optical chirped soliton in metamaterials[J]. Nonlinear Dynamics,2017,90(1):13-18.

    [28] Dong J,Jin Y J,Chen C,et al.The transmission properties of exact bright-like and dark-like solitons in metamaterials[J].Acta Sinica Quantum Optica,2013,19(2):162-170.

    [29] Ferrando A.Nonlinear plasmonic amplification via dissipative soliton-plasmon resonances[J].Physical Review A,2017,95(1):013816.

    [30] Zhang Q,Tan C H,Huang G X.Lossless Airy surface polaritons in a metamaterial via active Raman gain[J].Scientific Reports,2016,6:21143.

This Article

ISSN:0253-2239

CN: 31-1252/O4

Vol 40, No. 02, Pages 152-158

January 2020

Downloads:0

Share
Article Outline

摘要

  • 1 引言
  • 2 理论模型及飞秒准亮孤子解
  • 3 飞秒准孤子解的存在区间及特性
  • 4 结论
  • 参考文献