Side-by-side Chinese-English

基于双通道剪切干涉的高光谱偏振成像方法

刘成淼1,2 李建欣1,2 朱日宏1,2 崔向群1,3

(1.南京理工大学电子工程与光电技术学院, 江苏南京 210094)
(2.南京理工大学先进固体激光工业和信息化部重点实验室, 江苏南京 210094)
(3.中国科学院国家天文台南京天文光学技术研究所, 江苏南京 210042)

【摘要】光谱偏振成像技术可同步测量目标的空间信息、光谱成分和偏振特性分量, 在天文物理研究、大气成分的探测和生物医学等领域具有巨大的发展潜力。偏振信息的同步获取通常牺牲光谱成像的空间分辨率, 为避免光谱成像空间分辨率的降低, 提出基于双通道剪切干涉的高光谱偏振成像方法。利用双矩形干涉器实现双通道剪切干涉, 两个通道分别进行高分辨率干涉光谱成像以及基于微偏振阵列的光谱偏振成像。分析了双通道剪切干涉以及基于微偏振阵列调制的傅里叶变换光谱偏振成像原理, 论述了光谱信息反演方法以及偏振信息提取方法。搭建了实验装置, 对实际场景目标进行光谱偏振成像实验, 获得了目标的高空间分辨率光谱图像和偏振分量信息。研究表明, 该高光谱偏振成像技术可同步进行偏振成像测量和高分辨率光谱成像测量。

【关键词】 成像系统;干涉光谱成像;偏振成像;双通道横向剪切;微偏振阵列;

【DOI】

【基金资助】 国家自然科学基金 (61475072) ; 国家重大科学仪器设备开发专项 (2013YQ150829) ; 中央高校基本科研业务费专项资金 (30916014112-010) ;

Interferometric Imaging Spectropolarimeter Using Dual-Channel Lateral Shearing Beam Splitter

LIU Chengmiao1,2 LI Jianxin1,2 ZHU Rihong1,2 CUI Xiangqun1,3

(1.School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China 210094)
(2.MIIT Key Laboratory of Advanced Solid Laser, Nanjing University of Science and Technology, Nanjing, Jiangsu, China 210094)
(3.Nanjing Institute of Astronomical Optics & Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing, Jiangsu, China 210042)

【Abstract】Imaging spectropolarimeter can concurrently obtain the spatial information, spectral characteristics and polarization information of the target, it is a well-recognized technique and widely used in scientific applications, such as astrophysics, detection of atmospheric composition, biomedicine and other areas. The polarization information is generally acquired with the tradeoff of the decrease of the spectral imaging spatial resolution in imaging spectropolarimeters. An interferometric imaging spectropolarimeter using dual-channel lateral shearing beam splitter is proposed to avoid the decrease of spatial resolution. A dual-rectangle lateral shearing beam splitter is used in imaging spectropolarimeter, which makes it a dual-channel imaging spectropolarimeter. The two channels are used for high spatial resolution interferometric imaging and polarization spectral imaging based on micro-polarization array, respectively. The principle of the dual-rectangle lateral shearing beam splitter and the Fourier transform polarization spectral imaging based on micro-polarization array modulation are analyzed. The spectrum recovery method and extraction mode of polarization information are discussed. High spatial resolution spectral images and polarization images of a scene in the visible region are acquired by the experimental apparatus, which proves that the proposed imaging spectropolarimeter can concurrently be used for polarization imaging measurement and high spatial resolution spectral imaging measurement.

【Keywords】 imaging systems; interferometric imaging; polarimetric imaging; dual-channel lateral shearing; micro-polarization array;

【DOI】

【Funds】 National Natural Science Foundation of China (61475072); National Instrumentation Program of China (2013YQ150829); Fundamental Research Funds for the Central Universities (30916014112-010);

Download this article
    References

    [1] Malik Z, Cabib D, Buckwald R A, et al. Novel spectral imaging system combining spectroscopy with imaging applications for biology [C]. SPIE, 1995, 2329: 180–184.

    [2] Smith W H, Hammer P D. Digital array scanned interferometer: sensors and results [J]. Applied Optics, 1996, 35 (16): 2902–2909.

    [3] Sellar R G, Boreman G D. Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer [J]. Applied Optics, 2005, 44 (9): 1614–1624.

    [4] Diner D J, Chipman R A, Beaudry N A, et al. An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space [C]. SPIE, 2005, 5659: 88–96.

    [5] Stenflo J O, Twerenbold D, Harvey J W, et al. Coherent scattering in the solar spectrum: survey of linear polarization in the range 4200-9950Å [J]. Astronomy & Astrophysics Supplement Series, 1983, 54 (3): 505–514.

    [6] Gurjar R S, Backman V, Perelman L T, et al. Imaging human epithelial properties with polarized light-scattering spectroscopy [J]. Nature Medicine, 2001, 7 (11): 1245–1248.

    [7] Oka K, Kato T. Spectroscopic polarimetry with a channeled spectrum [J]. Optics Letters, 1999, 24 (21): 1475–1477.

    [8] Kudenov M W, Hagen N A, Dereniak E L, et al. Fourier transform channeled spectropolarimetry in the MWIR [J]. Optics Express, 2007, 15 (20): 12792–12805.

    [9] Goldstein D H. Mueller matrix dual-rotating retarder polarimeter [J]. Applied Optics, 1992, 31 (31): 6676–6683.

    [10] Gupta N, Dahmani R, Choy S J. Acousto-optic tunable filter-based visible-to-near-infrared spectropolarimetric imager [J]. Optical Engineering, 2002, 41 (5): 1033–1038.

    [11] Pezzaniti J L, Chenault D B. A division of aperture MWIR imaging polarimeter [C]. SPIE, 2005, 5888: 239–250.

    [12] Zhang C M, Li Q W, Yan T Y, et al. High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope [J]. Optics Express, 2016, 24 (20): 23314–23332.

    [13] Li J, Zhu J P, Wu H Y. Compact static Fourier transform imaging spectropolarimeter based on channeled polarimetry [J]. Optics Letters, 2010, 35 (22): 3784–3786.

    [14] Meng X, Li J X, Liu D F, et al. Fourier transform imaging spectropolarimeter using simultaneous polarization modulation [J]. Optics Letters, 2013, 38 (5): 778–780.

    [15] Zhang C M, Wu H Y, Li J. Fourier transform hyperspectral imaging polarimeter for remote sensing [J]. Optical Engineering, 2011, 50 (6): 066201.

    [16] Meng X, Li J X, Song H Q, et al. Full-Stokes Fourier-transform imaging spectropolarimeter using a time-division polarization modulator [J]. Applied Optics, 2014, 53 (24): 5275–5282.

    [17] Zhang Chunmin, Zhao Baochang, Xiangli Bin, et al. Analysis and Calculation of Throughput of the Polarization Interference Imaging Spectrometer [J]. Acta Optica Sinica, 2001, 21 (2): 192–197 (in Chinese).

    [18] Dong Ying, Xiangli Bin, Zhao Baochang. Lateral shearing interferometer in large aperture static imaging spectrometer [J]. Acta Photonica Sinica, 1999, 28 (11): 991–995 (in Chinese).

    [19] Li Jianxin, Meng Xin, Zhou Wei, et al. Image plane interferometric hyperspectral imaging based on re-imaging [J]. Acta Optica Sinica, 2012, 32 (12): 1230001 (in Chinese).

    [20] Bai Caixun, Li Jianxin, Meng Xin, et al. Spectrum recovery method for hyperspectral imaging based on symmetric wedgy interferometric cavity [J]. Acta Optica Sinica, 2016, 36 (2): 0230004 (in Chinese).

    [21] Jian Xiaohua, Zhang Chunmin, Sun Yao, et al. Novel polarization interference imaging spectrometer with adjustable lateral displacement savart polariscope [J]. Acta Optica Sinica, 2007, 27 (4): 643–646 (in Chinese).

    [22] Zhao Haibo, Li Huan, Lin Xuling, et al. Research on spectral polarization imaging system based on static modulation [J]. Spectroscopy and Spectral Analysis, 2015, 35 (4): 1129–1133 (in Chinese).

    [23] Guizar-Sicairos M, Thurman S T, Fienup J R. Efficient subpixel image registration algorithms [J]. Optics Letters, 2008, 33 (2): 156–158.

This Article

ISSN:0253-2239

CN: 31-1252/O4

Vol 37, No. 10, Pages 142-152

October 2017

Downloads:1

Share
Article Outline

Abstract

  • 1 Introduction
  • 2 Principle of dual-channel imaging spectropolarimeter
  • 3 Experiments and analysis
  • 4 Conclusions
  • References