Side-by-side Chinese-English


邵棣祥1,2 郭旭光1 张戎2 王丰2 符张龙2 王海霞2 姚辰2 周涛2 曹俊诚2 庄松林1

(1.上海理工大学光电信息与计算机工程学院, 上海 200093)
(2.中国科学院上海微系统与信息技术研究所太赫兹固态技术重点实验室, 上海 200050)

【摘要】设计了一种太赫兹量子阱光电探测器 (THz-QWP) , 并利用该器件研究了多体效应。通过表征和分析器件的光电流谱, 发现多体效应改变了器件的峰值响应频率, 并且引起了双响应峰现象, 从而验证了多体效应能加深有效势阱深度并增大基带与第一激发能级态之间的间距。因此, 在THz-QWP的结构设计中, 考虑多体效应具有重要意义。

【关键词】 探测器;太赫兹;量子阱;多体效应;光电探测器;


【基金资助】 国家973计划 (2014CB339803) ; 国家重大科学仪器设备开发专项 (2011YQ150021) ; 国家自然科学基金 (61574155, 61404149, 61404150, 61405233, 61604161) ; 上海市科学技术委员会资助项目 (15ZR1447500, 15YF1414400, 15JC1403800, 15DZ0500103, 17YF1429900) ;

Influence of Many-Body Effect on Terahertz Quantum Well Photodetectors

SHAO Dixiang1,2 GUO Xuguang1 ZHANG Rong2 WANG Feng2 FU Zhanglong2 WANG Haixia2 YAO Chen2 ZHOU Tao2 CAO Juncheng2 ZHUANG Songlin1

(1.School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China 200093)
(2.Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China 200050)

【Abstract】A terahertz quantum well photodetector (THz-QWP) is designed and the many-body effect is investigated in this device. By characterizing and analyzing the photocurrent spectrum of this device, it is found that the many-body effect changes the peak response frequency and causes the phenomenon of two response peaks, and thus it is confirmed that the many-body effect can deepen the depth of the effective well potential and simultaneously increase the energy spacing between the first excited state and the ground state. Therefore, it is important for the THz-QWP design to take the many-body effect into account.

【Keywords】 detectors; terahertz; quantum well; many-body effect; photodetectors;


【Funds】 National Basic Research Program of China (973 Program) (2014CB339803); National Instrumentation Program of China (2011YQ150021); National Natural Science Foundation of China (61574155, 61404149, 61404150, 61405233, 61604161) ; Project of Shanghai Science and Technology Committee (15ZR1447500, 15YF1414400, 15JC1403800, 15DZ0500103, 17YF1429900) ;

Download this article

    [1] Liu H C, Song C Y, Springthorpe A J, et al. Terahertz quantum-well photodetector[J]. Infrared Physics&Technology, 2004, 84 (20) : 4068-4070.

    [2] Cao Juncheng. Terahertz semiconductor detectors[J]. Physics, 2006, 35 (11) : 953-956(in Chinese).

    [3] Guo Xuguang, Gu Liangliang, Fu Zhanglong, et al. Research on terahertz quantum-well photodetectors[J]. Laser&Optoelectronics Progress, 2015, 52 (9) : 092302(in Chinese).

    [4] Guo X G, Tan, Z Y, Cao J C, et al. Many-body effects on terahertz quantum well detectors[J]. Applied Physics Letters, 2009, 94 (20) : 201101.

    [5] Gu L L, Zhang R, Tan Z Y, et al. Terahertz quantum well photo-detectors: Grating versus 45° facet coupling[J]. Journal of Physics D: Applied Physics, 2014, 47 (16) : 165101.

    [6] Xiong Feng. A Study of photocurrents of terahertz quantum-well photodetectors[D]. Shanghai: Shanghai Institute of Microsystem and Information Technology, 2008(in Chinese).

    [7] Chen Yuling. A Study of terahertz quantum-well detector[D]. Shanghai: Shanghai Institute of Microsystem and Information Technology, 2006(in Chinese).

    [8] Gao Jihong, Jia Jingyue, Zhang Yueheng, et al. Study on the performance and optimization of terahertz quantum-well photodetectors[J]. Journal of Infrared Millimeter Waves, 2015, 34 (6) : 731-736(in Chinese).

This Article


CN: 31-1252/O4

Vol 37, No. 10, Pages 57-62

October 2017


Article Outline


  • 1 Introduction
  • 2 Theory and model
  • 3 Material growth and device processing
  • 4 Device test and analysis
  • 5 Conclusion
  • References