Side-by-side Chinese-English

序列长脉冲激光热晕效应的定标规律

张鹏飞1 乔春红1 冯晓星1 李南1 黄童1 范承玉1 王英俭1

(1.中国科学院安徽光学精密机械研究所大气成分与光学重点实验室, 安徽合肥 230031)

【摘要】针对序列长脉冲激光, 提出了衡量序列长脉冲激光热晕效应强度的热畸变参数, 建立了序列长脉冲激光热晕效应的数值仿真模型, 并进行了实验验证。对比分析后发现实验结果与仿真结果在光斑形态和大小方面具有较好的一致性, 从而验证了序列长脉冲激光热晕效应的数学物理模型及仿真算法的可靠性。在此基础上, 通过改变大气参数及发射系统参数进行大量的数值仿真, 得出由序列长脉冲激光热晕效应引起的光斑扩展与热畸变参数的定量关系, 即序列长脉冲激光热晕效应的定标规律。

【关键词】 大气光学;定标规律;数值仿真;序列长脉冲激光;热晕效应;

【DOI】

【基金资助】 国家自然科学基金 (61405205) ;

Scaling Laws of Thermal Blooming Effect of Repetitively Long Pulse Laser

ZHANG Pengfei1 QIAO Chunhong1 FENG Xiaoxing1 LI Nan1 HUANG Tong1 FAN Chengyu1 WANG Yingjian1

(1.Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui, China 230031)

【Abstract】Thermal distortion parameters are proposed to evaluate the intensity of thermal blooming effect of repetitively long pulse laser. A numerical simulation model of thermal blooming effect of repetitively long pulse laser is established, and experiments are carried out. By comparing the simulation results with the experimental results, we find that the experimental results agree well with the simulation results in terms of spot shape and size, which verifies the reliability of the mathematical-physical model of repetitively long pulse laser and the simulation algorithm. On this basis, the quantitative relationships between the spot expansion and the thermal distortion parameters caused by the thermal blooming effect of repetitively long pulse laser, namely, scaling laws of thermal blooming effect of repetitively long pulse laser, are obtained by a large number of numerical simulations under different atmosphere parameters and launching system parameters.

【Keywords】 atmospheric optics; scaling laws; numerical simulation; repetitively long pulse laser; thermal blooming effect;

【DOI】

【Funds】 National Natural Science Foundation of China (61405205);

Download this article
    References

    [1] Smith D C. High-power laser propagation: Thermal blooming[J]. Proceedings of the IEEE, 1977, 65 (12) : 1679-1714.

    [2] Gebhardt F G. Twenty-five years of thermal blooming: An overview[C]. SPIE, 1990, 1221: 2-25.

    [3] Gebhardt F G. High power laser propagation[J]. Applied Optics, 1976. 15 (6) : 1479-1493.

    [4] Yan W, Chen Z H, Du T J, et al. Numerical simulation of correction thermal blooming based on deformable mirror eigen mode[J]. Acta Optica Sinica, 2014, 34 (11) : 1101001(in Chinese).

    [5] Wang Y B, Jin G Y, Zhang W. Temperature and thermal stress analysis of aluminium alloy plate irradiated by long pulsed laser[J]. Chinese J Lasers, 2016, 43 (8) : 0802006(in Chinese).

    [6] Eggins P L, McMordie J A, Dougla A C, et al. Thermal blooming of single pulse CO2 laser radiation[J]. Journal of Physics D: Applied Physics, 1979, 12: 2063-2077.

    [7] Wu Y, Wang Y J, Wang C, et al. Experiment research of thermal blooming effect induced by high power laser pulses[J]. High Power Laser and Particle Beams, 1992, 4 (1) : 86-91(in Chinese).

    [8] Liu C L, Hu X J, Yuan Y H, et al. Whole-beam thermal blooming experiments with a long laser pulse[J]. High Power Laser and Particle Beams. 1993, 5 (3) : 394-404(in Chinese).

    [9] Sun Z T, Sun X Q, Zou J W. Numerical analysis of thermal blooming induced by pulsed laser propagation in atmosphere[J]. Infrared and Laser Engineering, 2007, 36 (2) : 189-193(in Chinese).

    [10] Aitken A H, Hayes J N, Ulrich P B. Thermal blooming of pulsed focused Gaussian laser beams[J]. Applied Optics, 1973, 12 (2) : 193-197.

    [11] Buser R G, Rohde R S, Berger P J, et al. Transient thermal blooming of single and multiple short laser pulses[J]. Applied Optics, 1975, 14 (11) : 2740-2746.

    [12] Ageǐchik A A, Kotyaev O G, Rezunkov Y A, et al. Thermal blooming of repetitively-pulsed CO2-laser radiation propagating in the atmosphere[J]. Journal of Optical Technology, 1999, 66 (11) : 939-944.

    [13] Wallace J, Lilly J Q. Thermal blooming of repetitively pulsed laser beams[J]. Journal of the Optical Society of America, 1974, 64 (12) : 1651-1655.

    [14] Clifford S F, Gracheva M E, Gurvich A S. Laser beam propagation in the atmosphere[M]. New York: SpringerVerlag, 1978: 224-280.

    [15] Thomson J A. Stagnation and transonic effects in thermal blooming[J]. Applied Optics, 1977, 16 (2) : 355-366.

    [16] Smith D C. Thermal defocusing of CO2 laser radiation in gases[J]. IEEE on Quantum Electronics, 1969, 5 (12) : 600-606.

    [17] Feng X, Huang Y B, Fan C Y, et al. Numerical model for high energy laser indoor transmission[J]. High Power Laser and Particle Beams, 2004, 16 (9) : 1123-1126(in Chinese).

This Article

ISSN:0253-2239

CN: 31-1252/O4

Vol 37, No. 10, Pages 9-14

October 2017

Downloads:1

Share
Article Outline

Abstract

  • 1 Introduction
  • 2 Mathematical-physical model of the thermal blooming effect of repetitively long pulse laser
  • 3 Scaling law of atmospheric transmission of repetitively long pulse laser
  • 4 Conclusion
  • References