Light-Sheet Fluorescence Microscopy

Yang Yulong1 Zong Weijian1 Wu Runlong1 Chen Liangyi1

(1.State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing, China 100871)

【Abstract】In the past two decades, laser scanning confocal microscope has been the standard tool for observing the process of life at cellular and sub-cellular level. The optical sectioning capacity of pinhole-based confocal microscope comes at the price of unwanted excitation of fluorophores out of focal plane and phototoxic damage to biological samples. As a new type of fluorescent microscope, light-sheet fluorescence microscope (LSFM) uses side illumination to conduct surface imaging of the samples directly. As compared to the point-scanning imaging mode, LSFM excels at its imaging speed, which is much higher than that of laser scanning confocal microscope, thus making it possible to study some high-speed fine life activities. Another advantage of the light-sheet fluorescence microscope is that only the sample at the light sheet is excited and the sample outside the light sheet is not excited, so there is less phototoxic dosage and we can observe the sample in a longer time scale. The special illumination and imaging mode of the light-sheet fluorescence microscope make it play an irreplaceable role in three-dimensional high-speed imaging of big biological samples. The history and research status of light-sheet fluorescence microscope are reviewed with the purpose of providing a personal perspective of current situation and future direction of LSFM.

【Keywords】 microscopy; fluorescence imaging; light-sheet illumination; micro-imaging; phototoxicity;


【Funds】 Fund for National Key Research and Development Project (2016YFA0500400) National Basic Research Program of China (973 Program) (2013CB531200) National Natural Science Foundation of China (31327901, 31521062, 31570839)

Download this article

(Translated by caizhijian)


    [1]Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy[J]. Annual Review of Biochemistry, 2009, 78(1): 993–1016.

    [2]Miller C J. Ten years of methods[J]. Nature Methods, 2014, 11(10): 1000–1001.

    [3]Huisken J, Stainier D Y. Selective plane illumination microscopy techniques in developmental biology[J]. Development, 2009, 136(12): 1963–1975.

    [4]Siedentopf H, Zsigmondy R. ber sichtbarmachung und groessenbestimmung ultramikroskopischer teilchen, mit0318007–7besonderer anwendung auf goldrubinglaesern[J]. Annalen der Physik, 1903, 10: 1–39.

    [5]Voie A H, Burns D H, Spelman F A. Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens[J]. Journal of microscopy, 1993, 170(3): 229–236.

    [6]Hell S W, Stelzer E H, Lindek S, et al. Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy[J]. Optics Letters, 1994, 19(3): 222–224.

    [7]Huisken J, Swoger J, Bene F D, et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy[J]. Science, 2004, 305(5686): 1007–1009.

    [8]Keller P J, Schmidt A D, Wittbrodt J, et al. Digital scanned laser light-sheet fluorescence microscopy(DSLM) of zebrafish and Drosophila embryonic development[J]. Cold Spring Harbor Protocols, 2011, 2011(10): 1235–1243.

    [9]Swoger J, Huisken J, Stelzer E H. Multiple imaging axis microscopy improves resolution for thick-sample applications[J]. Optics Letters, 2003, 28(18): 1654–1656.

    [10]Weber M, Huisken J. Light sheet microscopy for real-time developmental biology[J]. Current Opinion in Genetics&Development, 2011, 21(5): 566–572.

    [11]Huisken J, Stainier D Y. Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM)[J]. Optics Letters, 2007, 32(17): 2608–2610.

    [12]Leischner U, Schierloh A, Zieglgansberger W, et al. Formalin-induced fluorescence reveals cell shape and morphology in biological tissue samples[J]. PloS One, 2010, 5(4): e10391.

    [13]Engelbrecht C J, Stelzer E H. Resolution enhancement in a light-sheet-based microscope (SPIM)[J]. Optics Letters, 2006, 31(10): 1477–1479.

    [14]Zong W J, Zhao J, Chen X Y, et al. Large-field high-resolution two-photon digital scanned light-sheet microscopy[J]. Cell Research, 2015, 25(2): 254–257.

    [15]Keller P J, Schmidt A D, Wittbrodt J, et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy[J]. Science, 2008, 322(5904): 1065–1069.

    [16]Keller P J, Schmidt A D, Santella A, et al. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy[J]. Nature Methods, 2010, 7(8): 637–642.

    [17]Tomer R, Khairy K, Amat F, et al. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy[J]. Nature Methods, 2012, 9(7): 755–763.

    [18]Ahrens M B, Orger M B, Robson D N, et al. Whole-brain functional imaging at cellular resolution using light-sheet microscopy[J]. Nature Methods, 2013, 10(5): 413–420.

    [19]Gao L, Shao L, Higgins C, et al. Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens[J]. Cell, 2012, 151(6): 1370–1385.

    [20]Gebhardt J C, Suter D M, Roy R, et al. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells[J]. Nature Methods, 2013, 10(5): 421–426.

    [21]Galland R, Grenci G, Aravind A, et al. 3D high- and super-resolution imaging using single-objective SPIM[J]. Nature Methods, 2015, 12(7): 641–644.

    [22]Planchon T A, Liang G, Milkie D E, et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination[J]. Nature Methods, 2011, 8(5): 417–423.

    [23]Chen B C, Legant W R, Wang K, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution[J]. Science, 2014, 346(6208): 1257998.

    [24]Tomer, R, Lovett-Barron M, Kauvar I, et al. SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function[J]. Cell, 2015, 163(7): 1796–1806.

    [25]Royer L A, Lemon W C, Chhetri R K, et al. Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms[J]. Nature Biotechnology, 2016, 34(12): 1267–1278.

    [26]Gao X, Zong W J, Chen B Y, et al. Core-pumped femtosecond Nd. . . fiber laser at 910 and 935nm[J]. Optics Letters, 2014, 39(15): 4404–4407.

    [27]Chen B Y, Jiang T X, Zong W J, et al. 910nm femtosecond Nd-doped fiber laser for in vivo two-photon microscopic imaging[J]. Optics Express, 2016, 24(15): 16544–16549.

    [28]Chen X Z, Zong W J, Li R Q, et al. Two-photon light-sheet nanoscopy by fluorescence fluctuation correlation analysis[J]. Nanoscale, 2016, 8(19): 9982–9987.

This Article


CN: 31-1252/O4

Vol 37, No. 03, Pages 71-78

March 2017


Article Outline


  • 1 Introduction
  • 2 Selective plane illumination microscope with layered light
  • 3 Digital scanning light-sheet microscope
  • 4 High-resolution light-sheet microscope
  • 5 Application and future prospects of light-sheet microscope
  • References