Side-by-side Chinese-English

中俄滨海大城市人口密度空间格局比较研究——以圣彼得堡和大连市为例

李晓玲1 修春亮2 Шендрик Александр3 王绮4

(1.东北师范大学地理科学学院, 中国吉林长春 130024)
(2.东北大学江河建筑学院, 中国辽宁沈阳 110169)
(3.圣彼得堡国立大学地球科学学院, 俄罗斯圣彼得堡 199034)
(4.长春大学管理学院, 中国吉林长春 130024)

【摘要】人口密度是识别人口空间分布特征的重要视角。文章基于人口统计数据,运用多尺度比较分析方法,对圣彼得堡和大连市2000、2010年两个时段人口密度空间格局进行分析,结果显示:(1)人口密度空间集聚性:两个城市不同尺度下人口密度空间分布均表现出集聚特征,随着研究尺度逐渐变小,人口密度集聚分布趋势越来越明显,相比而言,大连市人口密度空间集聚的趋势更明显。(2)人口密度空间分布模式:多尺度下圣彼得堡市显示出小集中、大分散的多核心空间分布模式;而大连市人口密度显示出大集中、小分散的单中心为主的空间分布模式。(3)人口密度空间格局:多尺度下圣彼得堡市各等级人口密度均表现出嵌入式空间分布格局;而大连市各等级人口密度表现为连片式空间分布格局。不同研究尺度揭示人口密度空间格局特征是不同的,通过多尺度下中俄滨海大城市人口密度空间格局比较分析,使得人口密度空间分布特征表现越加明显,利于其特征的总结。

【关键词】 滨海城市;多尺度;人口密度;核密度估计;空间格局;圣彼得堡;大连;

【DOI】

【基金资助】 国家自然科学基金项目(41801108、41471141); 中央高校基本科研业务费项目(2412018QD018);

Comparative study of the spatial pattern of population density of large coastal metropolitans in China and Russia

Li Xiaoling1 XIU Chunliang2 Alexander Shendrik3 WANG Qi4

(1.School of Geographical Science, Northeast Normal University, Changchun, Jilin, China 130024)
(2.School of Jangho Architecture, Northeastern University, Shenyang, Liaoning, China 110169)
(3.Institute of Earth Sciences of ST. Petersburg State University, Saint Petersburg, Russia 199034)
(4.School of Management, Changchun University, Changchun, Jilin, China 130024)

【Abstract】Population density is an important perspective in studying the spatial distribution of population. This study used multi-scale comparisons and analyzed the spatial pattern of population density of St. Petersburg and Dalian in 2000 and 2010 based on demographic data. Results showed (1) spatial aggregation of population density: The spatial distribution of population density in two cities at different scales shows agglomeration characteristics. As the research scale becomes small, the trend of aggregation is obvious. Dalian showed higher population aggregation than St. Petersburg; (2) spatial distribution pattern of population density: St. Petersburg showed the spatial pattern of “small agglomeration, large dispersion and multi-core,” whereas Dalian showed the characteristics of “single-core, big agglomeration and small dispersion” at multiple scales; (3) spatial pattern of population density: St. Petersburg showed an embedded distribution of population density, whereas Dalian showed contiguous spatial distribution under all scales of analyses. The spatial pattern is different at different research scales. Under a comparative analysis of the spatial patterns of Dalian’s and St. Petersburg’s population density, the spatial distribution characteristics of population density are obvious.

【Keywords】 coastal city; multi-scale; population density; kernel density estimation; spatial pattern; St. Petersburg; Dalian;

【DOI】

【Funds】 National Natural Science Foundation of China (41801108, 41471141); Fundamental Research Funds for the Central Universities (2412018QD018);

Download this article
    References

    [1] Shan, Z., Huang, Y., & Zhang, J. Economic Geography (经济地理), 35 (9): 33–39 (2015).

    [2] Wang, L, Feng, Z., Yang, Y. et al. Acta Geographica Sinica (地理学报), 69 (12): 1790–1798 (2014).

    [3] Mei, L., & Chen, Y. Human Geography (人文地理), 129 (4): 92–97 (2014).

    [4] Zhang, Z., Pan, J., & Li, X. Scientia Geographica Sinica (地理科学), 33 (1): 36–44 (2013).

    [5] Bai, Z., Wang, J., Yang, Y. et al. Acta Geographica Sinica (地理学报), 70 (8): 1229–1242 (2015).

    [6] Feng, J. & Zhou, Y. City Planning Review (城市规划), 27 (5): 55–63 (2003).

    [7] Xie, S. & Ning, Y. Areal Research and Development (地域研究与开发), 25 (3): 116–119 (2006).

    [8] Fu, H., Li, M., Zhao, J. et al. Human Geography (人文地理), 21 (3): 115–119 (2006).

    [9] Yan, Q., Tong, Z., Zhang, P. et al. Geography and Geo-Information Science (地理与地理信息科学), 27 (5): 95–98 (2011).

    [10] Wang, P., Shi, P., Wei, W. et al. Advances in Earth Science (地球科学进展), 27 (12): 1363–1372 (2012).

    [11] Wang, J., Yang, X. & Shi, R. Advances in Earth Science (地理科学进展), 31 (2): 176–182 (2012).

    [12] Yang, Z., Lei, J., Duan, Z. et al. Geographical Research (地理研究), 35(12): 2333–2346 (2016).

    [13] Кузнецов С В, Лачининский С С. Современнаятр актов какатегории《геоэконом ическо еположение》иеевери фикаци янапри мереСанкт-Петербургскойагломерации. Балтийскийрегион, 2014, 1 (19): 103–121.

    [14] https://ru.wikipedia.org/wiki/Автомобильные_дороги_России.html, 2017-01-13.

    [15] https://gov.spb.ruАдми нистр ациярайон овгород аСанктПетербурга.html, 2016-04-03.

    [16] http://csr-nw.ru/files/publications/development_potential_of_st_petersburg.pdf.html, 2011.

    [17] http://bbs.pinggu.org/a-785019.html, 2016-04-03.

    [18] http://www.dl.gov.cn/gov/.html, 2017-01-20.

    [19] http://www.zzxu.cn/fanwen/baogao/165007.html, 2016-04-28.

    [20] http://petrostat.gks.ru/wps/wcm/connect/rosstat_ts/petrostat/resorces/58cc7e804f0a97d5bbddbb22524f7e0f/SPB14.pdf. html, 2016-05-06.

    [21] Dalian Municipal Bureau of Statistics. Data of the sixth census of Dalian. 2016-06-10.

    [22] Timothée P, Nicolas L B, Emanuele S, et al. A network based kernel density estimator applied to Barcelona economic activities//International Conference on Computational Science and Its Applications. Springer Berlin Heidelberg, 2010: 32–45.

    [23] Deng, Y., Liu, S., Cai, J. et al. Acta Geographica Sinica (地理学报), 69 (10): 1473–1486 (2014).

    [24] Li, X. & Xiu, C., Шендрик Александр Владимирович. et al. Scientia Geographica Sinica (地理科学), 37 (9): 1382–1391 (2017).

This Article

ISSN:1000-8462

CN:43-1126/K

Vol 38, No. 09, Pages 78-86

September 2018

Downloads:4

Share
Article Outline

Knowledge

Abstract

  • 1 Data sources and research methods
  • 2 Multi-scale analysis of population density patterns in St. Petersburg and Dalian
  • 3 Spatial pattern of population density in St. Petersburg and Dalian from a comparative perspective
  • 4 Conclusion and discussion
  • References